Zgradba mikrokrmilnika
PIC18FXX20

Studijsko leto 2013/2014

J
A
—
<
m

Von Neumann
Architecture

L

/
NS —
8bitBus Program
& Data
Harvard

Architecture

16-bit Bus

Program
Memory

Data
Memory

Von Neumannova
(Princetonska) arhitektura

- podatki in ukazi so shranjeni

v skupnem spominu

Harvardska arhitektura
- podatki in ukazi so v

loCenih spominih

- omogoca razlicne dolzine
instrukcijskih in

podatkovnih besed

|lzvedba ukazov v dveh korakih:

« Zajem instrukcije (fetching instruction)
 lzvedba instrukcije (executing Instruction)

2
3
4

51
52
53
54

Prefetched Instruction

movlw 0x05

-

Example Program
1 MAIN movlw 0x05

SUB1

SUB2

movwf REG1
rcall SUB1
addwf REG2

movf PORTB ,w
return
movf PORTC ,w

return

T0

Fetch

Executing Instruction

Instruction Cycles

Prefetched Instruction Executing Instruction

Instruction Cycles

I J L

Example Program LU L
1 MAIN movlw 0x05 Fetch |Execute
movwf REG1l Fetch

2
3 rcall SUB1
4 addwf REG2

51 SUBl1 movf PORTB ,w
52 return
53 SUB2 movf PORTC ,w

54 return

2
3
4

51
52
53
54

Example Program
1 MAIN movlw O0x05

SUB1

SUB2

Prefetched Instruction

rcall SUB1

Executing Instruction

movwf REG1l

Instruction Cycles

TO

T

T2

Fetch

Execute

<+“—>

movwf REG1l
rcall SUB1l
addwf REG2

movEf PORTB,w
return
movf PORTC ,w

return

Fetch

Execute

Fetch

Time to execute normal instruction

Prefetched Instruction

addwf REG2

Executing Instruction

rcall SUBI1

Instruction Cycles

Example Program LI LI L L
1 MAIN movlw 0x05 Fetch |Execute
2 movwf REG1 Fetch |Execute
3 rcall SUB1 Fetch |Execute
4 addwf REG2 Fetch
51 SUBl1 movf PORTB ,w
52 return
53 SUB2 movf PORTC ,w
54 return

Prefetched Instruction Executing Instruction

movf PORTB,w rcall SUB1l

Instruction Cycles
I . .

Example Program o | ™M T2] |1
1 MAIN movlw 0x05 Fetch |Execute
2 movwf REGI1 Fetch |Execute |« P Time to execute call
instruction includes
3 rcall SUB1l Fetch |Execute pipeline flush
4 addwf REG2 Fetch | Flush
51 SUBl1l movf PORTB ,w Fetch
52 return

53 SUB2 movf PORTC ,w

54 return

Prefetched Instruction Executing Instruction

Instruction Cycles

TO L T2 T3 T4 TS5

Example Program

1 MAIN movlw 0x05 Fetch |Execute

2 movwf REG1 Fetch |Execute

3 rcall SUB1 Fetch |Execute

4 addwf REG2 Fetch | Flush
51 SUB1 movf PORTB ,w F}ch Execute
52 return Fetch

53 SUB2 movf PORTC ,w

54 return

2
3
4

51
52
53
54

Example Program
1 MAIN movlw O0x05

SUB1

SUB2

Prefetched Instruction

movf PORTC,w

Executing Instruction

return

Instruction Cycles

TO

™

T2

T3

T4

TS5

T6

Fetch

Execute

movwf REGI1
rcall SUB1
addwf REG2

movf PORTB,w
return
movf PORTC ,w

return

Fetch

Execute

Fetch

Execute

Fetch

Flush

Fetch

Execute

Fetch

Execute

Fetch

2
3
4

51
52
53
54

Prefetched Instruction

addwf REG2

Example Program
1 MAIN movlw 0x05

SUB1

SUB2

movwf REGI1
rcall SUB1l
addwf REG2

movf PORTB ,w
return
movf PORTC ,w

return

Executing Instruction

return

Instruction Cycles

TO

Fetch

T1 T2 T3 T4 T5 T6 T7
Execute
Fetch [Execute
Fetch |Execute
Fetch | Flush Fetch
l A
Fetch |Execute
Fetch [Execute
Fetch | Flush

0\

MASTE
CONFERENCE

8-bit Program Memory

Long Word Instruction

8-bit Instruction on Typical 8-bit MCU

ldaa #k
1]o[ofo]o0 0
k| k|k|k|k|k|k|[Kk

Example: Freescale ‘Load Accumulator A’:
» 2 Program Memory Locations
* 2 Instruction Cycles to Execute

Limits Bandwidth

Increases Memory
Size Requirements

16-bit Instruction on PIC18 8-bit MCU

16-bit Program Memory

//,/ -

movlw k

Example: ‘Move Literal to Working Register’
* 1 Program Memory Location
* 1 Instruction Cycle to Execute

0

0

0

0

1

1

1

0

k

k

k{k| k| k|k|k

Separate busses allow different widths
2k x 16 is roughly equivalent to 4k x 8

Data Bus

Data Memory
(Register File)
NN

==

Decoded Instruction
from Program

Opcode a

Address

Memory:

Arithmetic/Logic
Function to be Performed

] 1

Result
Destination

A

Address of Second
== Source Operand

07h
08h
09h
0Ah
0Bh
0Ch
0Dh
OEh
OFh
10h

Register File Concept:

All of data memory is
part of the register
file, so any location in
data memory may be
operated on directly

All peripherals are
mapped into data
memory as a series of
registers

Orthogonal

Instruction Set: ALL

instructions can
operate on ANY data
memory location

The Long Word
Instruction format
allows a directly
addressable register
file

negt fa | Negatef
addwf fd,a | Add WREG and f rlcf f.d,a | Rotate Left f through Carry
addwfc fd,a | Add WREG and Carry bit to f rincf f.d,a | Rotate Left f (No Carry)
andwf fd,a | AND WREG with f rrcf f.d,a | Rotate Right f through Carry
clrf fa Clear f rrncf f,d,a | Rotate Right f (No Carry)
comf f.d,a | Complement f setf fa Set f
cpfseq fa Compare f with WREG, skip = subfwb fd,a | Subtract f from WREG with borrow
cpfsgt fa Compare f with WREG, skip > subwf fd,a | Subtract WREG from f
cpfslit fa Compare f with WREG, skip < subwfb fd,a | Subtract WREG from f with borrow
decf fd,a | Decrementf swapf fd,a | Swap nibblesin f
decfsz fd,a | Decrement f, Skip if O tstfsz fa Test f, skipif 0
dcfsnz fd,a | Decrement f, Skip if Not 0 xorwf fd,a | Exclusive OR WREG with f
incf fd,a | Incrementf
incfsz fd,a | Incrementf, Skip if 0
infsnz fd,a | Incrementf, Skip if Not O
iorwf fd,.a | Inclusive OR WREG with f bcf fb,a | Bit Clear f
movf fda | Movef bsf fb,a | Bit Setf
movff f,f, Move f (src) to f, (dst) btfsc f.b,a | Bit Test f, Skip if Clear
movwf fa Move WREG to f btfss fb,a | Bit Testf, Skip if Set
mulwf fa Multiply WREG with f btg f.b,a | Bit Toggle f

Control Operations Literal Operations

bc n Branch if Carry addlw k Add literal and WREG

bn n Branch if Negative andlw Kk AND literal with WREG

bnc n Branch if Not Carry iorlw K Inclusive OR literal with WREG
bnn n Branch if Not Negative Ifsr f.k Move 12-bit literal to FSR

bnov n Branch if Not Overflow movib K Move literal to BSR<3:0>

bnz n Branch if Not Zero moviw K Move literal to WREG

bov n Branch if Overflow mullw K Multiply literal with WREG

bra n Branch Always retlw Kk Return with literal in WREG

bz n Branch if Zero sublw Kk Subtract WREG from literal

call n,s Call subroutine xorlw Kk Exclusive OR literal with WREG
clrwdt Clear Watchdog Timer

daw Decimal Adjust WREG

nop No Operation tblrd* Table Read

pop Pop top of return stack (TOS) tblrd*+ Table Read with post-increment
push Push top of return stack (TOS) tblrd*- Table Read with post-decrement
rcall n Relative Call tblrd+* Table Read with pre-increment
reset Software device RESET tblwt* Table Write

retfie S Return from interrupt tbiwt*+ Table Write with post-increment
return s Return from subroutine tblwt*- Table Write with post-decrement
sleep Go into standby mode tblwt+* Table Write with pre-increment

Byte Oriented Operations

15 9 8 7

hde a f f f f £ f f f

OR

| d a f f f f f f f f

‘ ‘ File Register Address
Destination(W or F) Access Bank

ADDWF O0x25, W, A
.

File Register Address Use Access Bank
Destination (Optional)

~
Bit Oriented Operations

15 11 9 8 7 0
odode 'blb b al|f|f|f f f|f|f|f

File Register Address

Bit Position (0-7)

BSF 0x25, 3, A

T Access Bank
Bit Position (Optional)

File Register Address

-~

Literal and Control Operations

15 8 7 Literal Value
| k k k k k| k
OR

MOVLW O0x25

*

Literal Value

-

Byte to Byte Move Operations (2 Words)

15 12 11 Source Register Address 0

fo £, f | f, f, f | f

S S S S S S S

fg fa fq fofq o fg fq o T T4 14

Destination Register Address

MOVFF 0x125, 0x140

o

Source Address Destination Address

4

Call and Goto Operations (2 Words)

15 11 8 7 0
|

| Ng| N, | Ng | ns|ng|ng|ny|n

Nyo Nyg N4g Ny7 Ny Ny | Nyg | N4z Ny2 [Nqq [Ngg | Ng

CALL O0x1125

*

Subroutine Address

Interpreter:

ADDLW j| j Execute| Reset

[Hex Literal Data from _ _

["Dec Instruction Word Register File Address

CBin FF 00h
FF_ [oth sTATUS
FF 02h 2 10
FF o3h (0|00
05 04h 7 pcc
FF 05h
FF 06h
FF 07h
FF 08h
FF 09h
FF 0Ah

W Register FF 0Bh

@;ﬂ Data Memory Organization

CONFERENGQE

Data Memory up
to 4 Kbytes

Divided into 256
byte banks

Half of bank 0 and
half of bank 15
form a virtual
bank that is
accessible no
matter which bank
Is selected

000h
07Fh

080h
OFFh

100h

1FFh
200h

2FFh

DO0Oh

DFFh
EOOh

EFFh
FOOh
F7Fh

F80h
FFFh

Access RAM

PIC16F8F2520/4520

Bank 0 GPR

Bank 1
GPR

Bank 2
GPR

Bank 13
GPR

Bank 14
GPR

Bank 15 GPR

Access SFR

Register File Map

Access Bank

00h
7Fh

80h
FFh

Access RAM

Access SFR

256 Bytes

Address
FFFh
FFEh
FFDh
FFCh
FFBh
FFAh
FFoh
FF8h
FF7h
FF6h
FF5h
FF4h
FF3h
FF2h
FF1ih
FFOh
FEFh
FEEh
FEDh
FECh
FEBh
FEAhQ
FE9h
FE8h
FE7h
FE6h
FE5h
FE4h
FE3h
FE2h
FE1h
FEOh

Name

TOSU

TOSH

TOSL

STKPTR

PCLATU

PCLATH

PCL

TBELPTRU

TBELPTRH

TELPTRL

TABLAT

PRODH

PRODL

INTCON

INTCONZ2

INTCON3

INDFO®)

POSTINCO®)

POSTDECO®)

PREINC0®)

PLUSW0®)

FSROH

FSROL

WREG

INDF1¢)

POSTING1®)

POSTDEC1(®

PREINC1G)

PLUSW1 ()

FSR1H

FSR1L

BSR

Address
FDFh
FDEh
FDDh
FDCh
FDBh
FDAh
FD%h
FD8h
FD7h
FD6h
FD5h
FD4h
FD3h
FD2h
FD1h
FDOh
FCFh
FCEh
FCDh
FCCh
FCBh
FCAh
FC%h
FC8h
FC7h
FC6h
FC5h
FC4h
FC3h
FC2h
FC1h
FCOh

SFR registri

Name

INDF2(3)

POSTING2()

POSTDEC2(3)

PREINC2()

PLUSW2()

FSR2H

FSR2L

STATUS

TMROH

TMROL

TOCON

OSCCON

LVDCON

WDTCON

RCON

TMR1H

TMRAL

T1CON

TMR2

PR2

T2CON

SSPBUF

SSPADD

SSPSTAT

SSPCON1

SSPCONZ2

ADRESH

ADRESL

ADCONO

ADCON1

Note 1: Unimplemented registers are read as '0’".
2: This register is not available on PIC18F2X2 devices.
3: This is not a physical register.

Address
FBFh
FBEh
FBDh
FBCh
FBBh
FBAh
FB9h
FB8h
FB7h
FB6h
FB5h
FB4h
FB3h
FB2h
FB1h
FBOh
FAFh
FAEh
FADh
FACh
FABh
FAAh
FAGh
FABh
FA7h
FAGh
FAS5h
FA4h
FA3h
FA2h
FAth
FAOh

Name

CCPR1H

CCPRI1L

CCP1CON

CCPR2H

CCPR2L

CCP2CON

TMR3H

TMR3L

T3CON

SPBRG

RCREG

TXREG

TXSTA

RCSTA

EEADR

EEDATA

EECONZ2

EECON1

IPR2

PIR2

PIEZ2

Address
FOFh
FO9Eh
F9Dh
FICh
F9Bh
F9AR
F99h
F98h
F97h
Fa6h
F95h
F94h
F93h
F92h
F91h
Fa0h
F8Fh
F8Eh
F8Dh
F8Ch
F8Bh
F8Ah
F89h
F&sh
F87h
F8eh
F85h
F84h
F83h
F82h
F81h
F80h

Name

IPR1

PIR1

PIE1

TRISE®

TRISD®)

TRISC

TRISB

TRISA

PORTE(@

PORTD?)

PORTC

PORTE

PORTA

File Name | Bit7 Bit6 Bit5 Bit4 Bit3 Bit 2 Bit 1 Bit 0 ona:ea?n Uaep'g:";
TOSU — — — Top-of-Stack upper Byte (TOS<20:165) ---0 0000 37
TOSH Top-of-Stack High Byte (TOS<15:85) 0000 0000 a7
TOSL Top-of-Stack Low Byte (TOS<7:0=) 0000 0000 a7
STKPTR STKFUL | STKUNF — Return Stack Pointer 00-0 0000 38
PCLATU — — — Holding Register for PC<20:16= ---0 0000 a9
PCLATH Holding Register for PC<15:8> Q000 0000 39
PCL PC Low Byte (PC<7:0=) 0000 0000 a9
TELPTRU — | — bit21@ | Program Memoary Table Pointer Upper Byte (TELPTR<20:16>) |--00 oooo| 58
TBLPTRH [Program Memary Table Pointer High Byte (TBLPTR<15:85) 0000 0000 58
TBLPTRL [Program Memary Table Painter Low Byte (TBELPTR<7:0=) 0000 0000 58
TABLAT Program Memary Table Latch 0000 0000 58
PRODH Product Register High Byte XXX KAXX 71
PRODL Preduct Register Low Byte AAAA HAXK 71
INTCON GIE/GIEH | PEIE/GIEL | TMROIE INTCIE RBIE TMROIF INTOIF RBIF 0000 000x 75
INTCONZ REPU INTEDGO | INTEDGH1 | INTEDGZ2 — TMROIP — RBIP 1111 -1-1 76
INTCONS3 INT2IP INTHIP — INTZIE INTHIE — INT2IF INT1IF [11-0 0-00 77
INDFO ses contents of FSRO to address data memory - value of FSRO not changed (not a physical register) n/a 50
POSTINCO contents of FSRO to address data memory - value of FSRO post-incremeantad (not a physical regis n/a 50
POSTDECO contents of FSRO to address data memory - value of FSRO post-decremented (not a physical register) nia 50
PREINGO contents of FSRO to address data memory - value of FSRO pre-incremented (not a physical register) n/a 50
PLUSWO contents of FSRO to address data memory - value of FSRO (net a physical regis n/a 50
Offset by value in WREG.
FSROH — — — — Indirect Data Memory Address Pointer 0 High Byte| ---- 000 50
FSROL Indirect Data Memory Address Pointer 0 Low Byte XXX XXXX 50
WREG Working Register XXX XXX nia
INDF4 ses contents of FSR1 to address data memory - value of FSR1 not changed (nat a physical register) n/a 50
POSTINCA contents of FSR1 to address data memory - value of FSR1 post-incremented ({not a physical register) n/a 50
POSTDECH contents of FSR1 to address data memery - value of FSR1 post-decremented (net a physical register) nia 50
PREINCA contents of FSH1 to address data memory - value of FSR1 pre-incremented (not a physical register) n/a 50
PLUSWA Uses contents of FSR1 to address data memory - value of FSR1 (not a physical register) nia 50
set by value in WREG
FSR1H — | — | — | — |Inc|irect Data Memory Address Pointer 1 High Byte| ---- 000 50
FSR1L Indirect Data Memory Address Pointer 1 Low Byte XXX XXX 50
BSR — | — | — | — |Bank Select Register ---- 000 48
INDF2 u contents of FSR2 to address data memory - value of FSRZ not changed (not a physical register) n/a 50
POSTINCZ2 |Uses contents of FSRZ to address data memory - value of FSR2 post-incremented (not a physical register) n/a 50
POSTDEC2 |Uses contents of FSR2 to address data memeary - value of FSR2 post-decremented (not a physical register) n/a 50
PREINCZ ntents of FSRZ to address data memory - value of FSR2 pre-incremanted {not a physical register) n/a 50
PLUSWZ2 Uses contents of FSR2 to address data memory - value of FSR2 (not a physical register) nia 50
Oftset by value in WREG.
FSR2H — | — | — | — |Indirect Data Memoary Address Pointer 2 High Byte| ---- 0000 50
FSR2L Indirect Data Memery Add ointer 2 Low Byte XXX KAXX 50
STATUS — | — T — 7 ~n] ov | z [e | ¢ J-xwx| =
TMROH Timer0 Register High Byte 0000 0000 105
TMROL Timer0 Register Low Byte XXX KAXX 105
TocoN | Tmmoon | TosBIT | Tocs | TosE | Psa | Tops2 | Topst | ToPso [1111 1111| 103
Legend: x=unknown, u=unchanged, - = unimplemented, q = value depends on condition
Note 1: RAS and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read '0' in all other Oscillator mades
2: Bit 21 of the TELPTRU allows access to the device configuration bits
3: These registers and bits are reservad on the PIC18F2X2 devices; always maintain these clear.

. Value on | Details

File Name Bit7 Bit 6 Bit5 Bit 4 Bit3 Bit 2 Bit 1 Bit 0 POR, BOR | on page:
QOSCCON — — — — — — — SCS |---- --- 0 21
LVDCON — — IRVST LVDEN LvDL3 LvDL2 LvDLA LVDLO |--00 0101 191
WDTCON — — — — — — — SWDTE |---- --- 0 203
RCON IPEN — — Rl TO FD POR BOR |0--1 11qq|53,28 84
TMR1H Timer1 Register High Byte MMM HHHH 107
TMR1L Timeri Register Low Byte MMM HHHH 107
T1CON ro16 | — | Tickest | Tickeso | Tioscen | TISYNG | TMARics | TMR1ON [o-00 ooco| 107
TMR2 Timer2 Register 0000 0000 111
PR2 Timer2 Period Register 1111 1111 112
T2CON — | Toutpsa [Toutpsz | TouTPs1 | TouTPso | TMR2ON | T2cKPS1 | T2CKPSO [-000 0000] 111
SSPBUF S5P Receive Buffer/Transmit Register MMM HHHH 125
SSPADD S5P Address Register in I2C Slave mode. SSP Baud Rate Reload Register in 12C Master mode. 0000 0000 134
SSPSTAT SMP CKE D/A P S RAN UA BF |oooo cooo| 126
SSPCONA wcoL SSPOV SSPEN CKP SSPM3 SSPM2 SSPMA SSPMO [o000 0000 127
SSPCON2 GCEN ACKSTAT | ACKDT ACKEN RCEN PEN RSEN SEN 0000 0000 137
ADRESH |A/D Result Register High Byte xxxx xxxx| 187,188
ADRESL A/D Result Register Low Byte xxxx xxxx| 187,188
ADCONOD ADCSA ADCS0 CHs2 CHSA CHSO0 GO/DONE — ADOM |o0000 00-0 181
ADCONA ADFM ADCS2 — — PCFG3 PCFG2 PCFG1 PCFGO |00-- 0000 182
CCPR1H Capture/Comparae/PWM Register{ High Byte wxx xxxx| 121,123
CCPRIL Capture/Compara/PWM Register{ Low Byte wxx xxxx| 121,123
CCP{CON — | — [obciet | pcieo | cecpima | copimz | ccpimit | coPimo |--0o cooo| 117
CCPR2H Capture/Compara/PWM Register2 High Byte wxx xxxx| 121,123
CCPR2L Capture/Compara/PWM Register2 Low Byte wxx xxxx| 121,123
CCP2CON — | — | pbceet | pceeo | ccpams | copamz | copamit | copamo |--co cooo| 117
TMR3H Timer3 Register High Byte MMM HHHH 113
TMR3L Timer3 Register Low Byte MMM HHHH 113
T3CON ro16 | Taccpe | Tackpst | Tackeso | Taccpt | TaSVC | TmRacs | TMR3sON [eooo cooo] 113
SPBRG USART1 Baud Rate Generator 0000 0000 168
RCREG USART1 Receive Register 0000 0000([175,178,

180
TXREG USARTA Transmit Register 0000 0000([173,176,

179
TXSTA CSRC TXS9 TXEN SYNC — BRGH TRMT TX9D |0000 -010 166
RCSTA SPEN RX9 SREN CREN ADDEN FERR CERR RAX9D |o0000 000x 167
EEADR Data EEPROM Address Register 0000 000O0| 65,69
EEDATA Data EEPROM Data Register 0000 0000 69
EECONZ Data EEPROM Control Register 2 (not a physical register) ---- ----| 6589
EECONT EEPGD CFGS — FREE WRERR WREN WR RD xx-0 x000 66
Legend: x=unknown, u=unchanged, - = unimplemented, g = value depends on condition

MNote 1: RAG and associated hits are configured as port pins in RCIO and ECIO Oscillator mode only and read '0' in all other Oscillator modes.
2: Bit 21 of the TELPTRU allows access to the device configuration bits.
3: These registers and bits are reserved on the PIC18F2X2 devices; always maintain these clear.

File Name | Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 P‘g‘;feB‘B“H D'::ep‘gg‘i:
IPR2 — — — EEIP BCLIP LVDIP TMR3IP | ccP2P |---1 1111 83
PIR2 — — — EEIF BCLIF LVDIF TMR3IF | CCP2IF |---0 oooo| 79
PIE2 — — — EEIE BCLIE LVDIE TMR3IE | CCP2IE |---0 oooo| &1
IPR1 PSPIPE) ADIP RCIP TXIP SSPIP ccPiIP | TMR2IP | TMR1IP |1111 1111 &2
PIR1 PSPIF® ADIF RCIF TXIF SSPIF CCPAIF | TMR2IF | TMR1IF |oooo oooo| 78
PIE1 PSPIE®) ADIE RCIE TXIE SSPIE CCP1IE | TMR2IE | TMR1IE |cooo cooo| 80
TRISE® IBF OBF IBOV | PSPMODE — Data Direction bits for PORTE oooo -111| 98
TRISD® Data Direction Control Register for PORTD 1111 1111 96
TRISC Data Direction Control Register for PORTC 1111 1111 93
TRISE Data Direction Control Register for PORTE 1111 1111 90
TRISA — TRISAS™M |Data Direction Control Register for PORTA -111 1111 87
LATE® — — — — — Read PORTE Data Latch, —o-- oxxx| 99
Write PORTE Data Latch

LATD® Read PORTD Data Latch, Write PORTD Data Latch xxxx xxxx| 95
LATC Read PORTC Data Latch, Write PORTC Data Latch HHHH XHXX 93
LATE Read PORTE Data Latch, Write PORTB Data Latch HHHH XHXX a0
LATA — LATAB" |Read PORTA Data Latch, Write PORTA Data Latch(® —xxx xxxx| 87
PORTE® |Read PORTE pins, Write PORTE Data Latch ---- -ooo| 99
PORTD® |Read PORTD pins, Write PORTD Data Latch xxxx xxxx| 95
PORTC Read PORTC pins, Write PORTC Data Latch HHHH XHXX 93
FPORTE Read PORTE pins, Write PORTB Data Latch XXX XXXX 90
PORTA — Ra6" |Read PORTA pins, Write PORTA Data Latch(! -x0x oooo| 87
Legend: x=unknown, u=unchanged, - = unimplemented, q = value depends on condition

Note 1: RAS and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read '0' in all other Oscillator modes.
2: Bit 21 of the TELPTRU allows access to the device configuration hits.
3: These registers and bits are reserved on the PIC18F2X2 devices; always maintain these clear.

Mg\ﬁ.a PIC18 Addressing Modes

e Data Memory Access:

Direct clrf <reg>, <dst>
Indirect clrf INDFn, <dst>

Auto Pre-Increment
Indirect

Auto Post-
Increment Indirect

Auto Post-
Decrement Indirect

movff PREINCn, <dst>

movEff POSTINCn, <dst>

movEff POSTDECn, <dst>

Index Indirect movEff PLUSWn, <dst>
Immediate (Literal) |movlw <const>

© 2008 Microchip Technology Incorporated. All Rights Reserved. 120518 A Slide 25

o~

OOHFIHIHQI

‘a’ Bit from
Instruction

BSR

4 bits from BSR Register

‘f’ Operand

8 bits Encoded in Instruction

egister Direct Addressing

12-bit Effective Address

']

000

0

0

0

00000

0

=)

© 2008 Microchip Technology Incorporated. All Rights Reserved.

00
01
02
03

T heeeeseeeees
PAVAVAVAVAVAVAVAVAV VAV

7D
7E
7F
80
81
82
FC
FD

FE
FF

Bank0

Bank1

Bank2

Bank13

Bank14

0x07D

Bank15

L obbbbbttdd
PAVAVAVAVAVAVAVAVAVAVAVE

1205,P18

Slide

27

(Use this when coding)

x|

A\ Register Direct Addressing:
Example

BSR ‘f* Operand

Effective

4 bits from BSR Register 8 pits Encoded in Instruction Address Access RAM
0000/00000000|= 000 Bank 0
Bank 1

MyR FF 120h
MyReg equ 0x120 yres

Bank 2

II\I\W'!

Bank 15
movlw b’11110000° "
movwf TRISB, a Access SFR
bsf PORTB, 0, a PORTB FF |F8tn
movlb 0x01 LATB FF |FsaAn
movlw OxAA TRISB FF [Fo3n
movwf MyReg : @120h BSR FF |FEon

WREG FF |[FEsn

© 2008 Microchip Technology Incorporated. All Rights Reserve d. 1205018 y Slmm

Op. movib — vnos vrednosti v BSR register

MASTE
CONFERENCE

4 bits from FSROH

8 bits from FSROL

0000| 0000OO0O0O0O0
FSROH FSROL
Data Memory

e No banking - RAM is fully 000h
linear when using indirect 001h
addressing 002h
e FSRH:FSRL can be loaded ggi:
with a single instruction: Ifsr 005h

e Full 12-bit increment/ AN
decrement of pointer FFAh
possible with pre- or post- FFBh
modification modes FFCh
FFDh
e Three FSR register pairs FFEh
available: FSRO, 1 and 2 FFFh

© 2008 Microchip Technology Incorporated. All Rights Reserved.

120518

—

= Register Indirect Addressing

12-bit Effective Address

OxFFD

Register File
Address Bus

o

Slide 29

Posredno naslavijanje z uporabo FSR in INDF registrov

QAN 0Oh
Instruction
Executed
Opcode Address
i FFFh
12

File Address = access of an indirect addressing reqgister

BESR<3:0>| 412 12

Instruction
Fetched

Opcode File FSH

Slika 4.7: Posredno naslavljanje

Posredno naslavljanje z uporabo FSR in INDF registrov

Indirect Addressing

11 FSR Register 0
HEEEEEEEEN
.. v i
Location Select
‘ 0000h
E‘!E;t;lorym
OFFFh

Note 1: For register file map detail, see Table 4-1.

Vloga FSR registra pri posrednem naslavljanju.

Primer uporabe posrednega naslavljanja:

LFSR FSRO, 0x100 ; NaloZi register

NEXT CLRF POSTINCO ; BriSi INDF in povecCaj Stevec za 1
BTFSS FSROH, 1 ; Alije na strani 1 (Bankl) vse zbrisano?
GOTO NEXT ; Ne, briSi naslednjo lokacijo

CONTINUE ; Da, nadaljuj

Mgma Register Indirect Addressing

CONFERENCE

e Several additional indirect
addressing modes have been added
to the PIC18:

— Indirect — no change in FSRn

— Auto Post-Decrement FSRn (FSRn--)
— Auto Post-Increment FSRn (FSRn++)
— Auto Pre-Increment FSRn (++FSRn)
— Index Indirect (Address = FSRn + W)

Slide 30

e\

i

MASTE
CONFERENCE

Register Indirect Addressing

e These modes are invoked by using
special non-physical registers:

Indirect — no change:
Auto Post-Decrement:
Auto Post-Increment:
Auto Pre-Increment:
Index Indirect/Offset:

120518

INDFnN
POSTDECn
POSTINCn
PREINCn
PLUSWn

Slide 31

Register Indirect

wamt Addressing: Example 1

Example: Clear all RAM locations from 120h to 17Fh

0000/ 0000000
FSROH FSROL
FSRO Decimal Value: | 180
lfsr 0,0x120
LOOP clrf POSTINCO
FSROH
btfss FSROL, 7 FSROL
goto LOOP

<next instruction>

© 2008 Microchip Technology Incorporated. All Rights Reserved. 1205,18

Register File

FF

FF

FF

FF
SIS

FF

FF

FF
FF

OO

01

80

PLUSWO

PREINCO

POSTDECO

POSTINCO

INDFO
10000000

11Fh
120h
121h
122h

17Dh
17Eh
17Fh
180h

FESh
FEAh
FEBh
FECh
FEDh
FEEh
FEFh

[KIKTIICT

e\

MASTE
CONFERENCE

Register Indirect
Addressing: Example 2

Example: “Spaghetti” Addressing (Don’t try this at home!)
0000 000O0O0O0O00O

FSROH FSROL
FSRO Decimal Value: 129

lfsr 0,0x128

clrf INDFO

bsf POSTDECO, 0 FSROH

clrf POSTINCO Ay

clrf PREINCO

moviw 0x02

clrf PLUSWO

© 2008 Microchip Technology Incorporated. All Rights Reserved. 1205P18

Register File

FF

FF

FF

FF

FF

FF

FF

FF

FF
AL

FF

FF

PLUSWO

PREINCO

POSTDECO

POSTINCO

INDFO

"8

126h
127h
128h
129h
12Ah
12Bh
12Ch
12Dh
12Eh

FESh
FEAh
FEBh
FECh
FEDh
FEEh
FEFh

< KIKTIDIE]

wias Program Memory Organization

CONFERENCE
Reset Vector 000000h
. One, Contiguous Iinear High Priority Interrupt Vector 000008h
p rog ra m m e m o ry s pace u p to Low Priority Interrupt Vector 000018h

2 MB (1M Word)

21-bit Program Counter

e

On-chip Program Memory

Stack Level 1 007FFEh
Stack Level 2

008000h
Stack Level 30
Stack Level 31

Unimplemented
31 Level Stack Program Memory
(Read as ‘0’)
1FFFFEh

© 2008 Microchip Technology Incorporated. All Rights Reserved. 1205,P18 h Slide 35

'ﬁ\ Program Memory is Byte
YRR 3 Addressarlglle ;

e Low byte has even address, high byte has odd
address

e Addresses of instructions are always even

] Word Address
High Byte Address 16-bit Program Memory | ow Byte Address

0x000001 (0000 0000[000000 0 0|0x000000
0x000003 |00 00000 0[00000000|0x000002
0x000005 |00 000000000000 0/0]|oxo000004

0x000007 |00 0000000O000O0O0O0O]ox000006

0x000009 |00 0000000000000 O0]0ox000008
0x00000B |0 0000000000000 O0O|0]ox00000A
0x00000D |0 00 0000O00O0O0O0O0O0O0 O)ox00000C

0x00000F (000000000000 O0O0O0/0]ox00000E

© 2008 Microchip Technology Incorporated. All Rights Reserved. 1205/P18 A Slide 36

bit 7-5
bit 4

bit 3

bit 2

bit 1

bit 0

Statusni register

U-0 u-o0 u-0 R/AW-x R/AW-x RAW-x R/W-x R/W-x
— — — N oV z DC Cc
bit 7 bit 0

Unimplemented: Read as '0f

N: Negative bit

This bit is used for signed arithmetic (2's complement). It indicates whether the result was

negative (ALU MSB =1).
1 = Result was negative
0 = Result was positive

QV: Overflow bit

This bit is used for signed arithmetic (2's complement). It indicates an overflow of the
7-bit magnitude, which causes the sign bit (bit7) to change state.

1 = Overflow occurred for signed arithmetic (in this arithmetic operation)

0 = No overflow occurred
Z: Zero bit

1 = The result of an arithmetic or logic operation is zero
0 = The result of an arithmetic or logic operation is not zero

DC: Digit carry/borrow bit

For ADDWF, ADDLW, SUBLW and SUBWF instructions

1 = A carry-out from the 4th low order bit of the result occurred
0 = No carry-out from the 4th low order bit of the result

Note: For borrow, the polarity is reversed. A subtraction is executed by adding the two’s
complement of the second operand. For rotate (RRF, RLF) instructions, this bit is
loaded with either the bit 4 or bit 3 of the source register.

C: Carry/borrow bit

For ADDWF, ADDLW, SUBLW and SUBWF instructions

1 = A carry-out from the Most Significant bit of the result occurred
0 = No carry-out from the Most Significant bit of the result occurred

Note: For borrow, the polarity is reversed. A subtraction is executed by adding the two's
complement of the second operand. For rotate (RRF, RLF) instructions, this bit is
loaded with either the high or low order bit of the source register.

Legend:
R = Readable bit
-n = Value at POR

W = Writable bit
1" = Bitis set

U = Unimplemented bit, read as ‘0

‘0" = Bitis cleared

X = Bit is unknown

Statusni register

X X X N oV Z DC
N - Negative
OV - Overflow bit
Z — Zero bit

DC - Digit Carry
C - Carry bit

Field

Description

RAM access bit

: a = 0: RAM location in Access RAN (BSR register is ignored)
a =1: RAM bank is specified by BSR register
bbb Bit address within an 8-bit file register (010 7)
BSR Bank Select Register. Used to select the current RAM bank.
d Destination select bit;
d = 0: store result in WREG,
d = 1: store result in file register f.
dest Destination either the WREG register or the specified register file location
b 8-bit Register file address (0x00 to 0xFF)
fs 12-bit Register file address (0x000 to OXFFF). This is the source address.
fd 12-bit Register file address (0x000 to 0xFFF). This is the destination address.
k Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value}
label Label name
mm The mode of the TBLPTR register for the Table Read and Table Write instructions.
Only used with Table Read and Table Write instructions:
* No Change to register (such as TBLPTR with Table reads and writes)
* 4 Post-Increment register (such as TBLPTR with Table reads and writes)
* o Post-Decrement register (such as TBLPTR with Table reads and writes)
+* Pre-Increment register (such as TBLPTR with Table reads and writes)
n The relative address (2's complement number) for relative branch instructions, or the direct address for
Call’/Branch and Return instructions
PRODH Product of Multiply high byte
PRODL Product of Multiply low byte
E Fast Call’Return mode select bit.
s =0: do not update into/from shadow registers
s =1: cerfain registers loaded into/from shadow registers (Fast mode)
u Unused or Unchanged
WREG Working register (accumulator)
x Don't care (0 or 1)
The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all
Micrachip software toals.
TELPTR 21-bit Table Pointer {points to a Program Memory location)
TABLAT 8-bit Table Latch
TOS Top-of-Stack
pC Program Counter
PCL Program Counter Low Byte
PCH Program Counter High Byte
PCLATH Program Counter High Byte Latch
BCLATU Program Counter Upper Byte Latch
CIE Global Interrupt Enable bit
WDT Watchdog Timer
TO Time-out bit
FD Power-down bit
¢, DT, %, OV, ALU status bits Carry, Digit Carry, Zero, Overflow, Negative
[] Optional
() Contents
— Assigned to
< > Register bit field

In the set of

italics

User definad term (font is courier)

Byte-oriented file register operations
15 10 9 87 0
OPCODE [d [a | f (FILE #)

d = 0 for result destination to be WREG register
d = 1 for result destination to be file register (f)

Example Instruction

ADDWF MYREG, W, B

a = 0 to force Access Bank
a =1 for BSR to select bank
f = 8-bit file register address

Byte to Byte move operations (2-word)

15 12 1 0
\ OPCODE | f (Source FILE #) \
15 12 1 0

\ 1111 | f (Destination FILE #) \

f = 12-bit file register address

Bit-oriented file register operations

15 1211 98 7 0
OPCODE| b (BIT #] a | f(FILE #) |

b = 3-bit position of bit in file register (f)
a = 0 to force Access Bank

a =1 for BSR to select bank

f = 8-bit file register address

Literal operations

15 8 7 0
OPCODE k (literal)

k = 8-bit immediate value

Control operations
CALL, GOTO and Branch operations
15 87 0
| OPCODE | n<7:0> (literal) |
15 12 1 0
| 1111 ‘ n<19:8> (literal) |

n = 20-bit immediate value

15 8 7 0
| OPCODE | s[n<7:0> (iiteral) |
15 12 1 0
| | n<19:8> (literal) |
S = Fast bit
15 11 10 0
| opcoDE | n<10:0> (literal) |
15 8 7 0
| OPCODE | n<7:0> (literal) |

MOVFF MYREG1, MYREG2

BSF MYREG, bit, B

MOVLW 0x7F

GOTO Label

CALL MYFUNC

BRA MYFUNC

BC MYFUNC

16-Bit Instruction Word

Mnemonic, Description Cycles Status Notes

Operands MShb LSh Affected
BYTE-ORIENTED FILE REGISTER OPERATIONS
ADDWF f,d,a |[Add WREG and f 1 0010 o1dao ffff ffff |C,DC,Z OV,N |1,2
ADDWFC f,d,a |Add WREG and Carry bit to f 1 0010 oda ffff ffff |C,DC,Z, OV,N (1,2
ANDWF f,d,a |[AND WREG with f 1 0001 o0lda ffff ffff [Z, N 1,2
CLRF f,a Clear f 1 0110 101a ffff ffff |Z 2
COMF f,d,a |Complement f 1 0001 1llda ffff ffff [Z, N 1,2
CPFSEQ f,a Compare f with WREG, skip = 1(20r3) | 01120 oo01a ffff ffff |[None 4
CPFSGT f,a Compare f with WREG, skip > 1(20r3) | 0110 o010a ffff ffff |[None 4
CPFSLT f, a Compare f with WREG, skip < 1(20r3) | 0110 o000a £ffff ffff |None 1,2
DECF f, d,a |Decrement f 1 o000 o0lda £fff ffff (C,DC,Z OV,N |1,2,3,4
DECFSZ f, d, a |Decrementf, Skipif 0 1(20r3) | 0010 11da ffff ffff [None 1,2,3,4
DCFSNZ f, d, a |Decrement f, Skip if Not O 1(20r3) | 0100 11da ffff ffff |[None 1,2
INCF f,d,a |Increment f 1 0010 1o0da ffff ffff |C,DC,Z,0OV,N 1,2, 3,4
INCFSZ f, d, a |Increment f, Skip if 0 1(20r3) | 0011 11da ffff ffff |None 4
INFSNZ f, d,a |Increment f, Skip if Not 0 1(20r3) | 0100 10da ffff ffff [None 1,2
IORWF f, d,a |Inclusive OR WREG with f 1 0001 ooda £fff f£fff [Z, N 1,2
MOVF f,d,a [Move f 1 0101 ooda £fff f£fff [Z N 1
MOVFF fs, Iy |Move fg (source) to 1st word 2 1100 ffff £fff ff£f |None

fq (destination) 2nd word 1111 ffff £fff ffff
MOVWF f,a Move WREG to f 1 0110 111a ffff £f££f [None
MULWF f,a Multiply WREG with f 1 0000 00la ffff ffff [None
NEGF f,a Negate f 1 0110 110a ffff ffff (C,DC,Z,0OV,N 1,2
RLCF f, d, a |Rotate Left f through Carry 1 0011 o01da ffff ffff (C,Z, N
RLNCF f, d, a |Rotate Leftf (No Carry) 1 0100 01da ffff ffff (Z, N 1,2
RRCF f, d, a |Rotate Right f through Carry 1 0011 o0o0da ffff ffff [C,Z, N
RRNCF f, d, a |Rotate Right f (No Carry) 1 0100 oo0da ffff ffff [Z N
SETF f,a Set f 1 0110 1lo0a ffff f££f [None
SUBFWB f, d, a |Subtract f from WREG with 1 0101 o01da ffff ffff |C,DC,Z, OV,N |1,2
borrow
SUBWF f, d, a |Subtract WREG from f 1 0101 11da ffff ffff |C,DC,Z OV,N
SUBWFB f,d,a |Subtract WREG from f with 1 0101 1loda ffff ffff |C,DC,Z OV,N |1,2
borrow

SWAPF f, d, a |Swap nibbles in f 1 0011 10da ffff ffff [None
TSTFSZ f, a Test f, skip if 0 1(20r3) | 0110 o01la ffff ffff [None 1,2
XORWF f, d,a |Exclusive OR WREG with f 1 0001 1loda £fff f£fff [Z, N
BIT-ORIENTED FILE REGISTER OPERATIONS
BCF f, b, a |BitClearf 1 1001 ©bbba ffff ffff [None 1,2
BSF f,b,a |BitSetf 1 1000 bbba ffff ffff [None 1,2
BTFSC f, b, a |Bit Test f, Skip if Clear 1(20r3) | 1011 bbba ffff ffff [None 3,4
BTFSS f, b, a |Bit Testf, Skip if Set 1(20r3) | 1010 bbba ffff ffff [None 3,4
BTG f, d, a |Bit Toggle f 1 0111 bbba ffff ffff [None 1,2

Mnemonic, o 16-Bit Instruction Word Status
Description Cycles Notes
Operands MSb LSh Affected
CONTROL OPERATIONS
BC n Branch if Carry 1(2) 1110 0010 nnnn nnnn |None
BN n Branch if Negative 1(2) 1110 0110 nnnn nnnn |None
BNC n Branch if Not Carry 1(2) 1110 0011 nnnn nnnn |None
BNN n Branch if Not Negative 1(2) 1110 0111 nnnn nnnn |None
BNOV n Branch if Not Overflow 1(2) 1110 0101 nnnn nnnn |None
BNZ n Branch if Not Zero 2 1110 0001 nnnn nnnn |None
BOV n Branch if Overflow 1(2) 1110 0100 nnnn nnnn |None
BRA n Branch Unconditionally 1(2) 1101 oOnnn nnnn nnnn |None
BZ n Branch if Zero 1(2) 1110 0000 nnnn nnnn |None
CALL n, Call subroutine1st word 2 1110 1108 kkkKk kkkk |None
2nd word 1111 kkkk kkkk kkkk
CLRWDT — Clear Watchdog Timer 1 0000 0000 0000 0100 |TO,PD
DAW — Decimal Adjust WREG 1 0000 0000 0000 0111 |C
GOTO n Go to address1st word 2 1110 1111 kkkk kkkk |None
2nd word 1111 kkkk kkkk kkkk
NOP — No Operation 1 0000 0000 0000 0000 |None
NOP — No Operation 1 1111 xxxx xxxx xxxx |None
POP — Pop top of return stack (TOS) 1 0000 0000 0000 0110 |None
PUSH — Push top of return stack (TOS) 1 0000 0000 0000 0101 |None
RCALL n Relative Call 2 1101 1nnn nnnn nnnn |None
RESET Software device RESET 1 0000 0000 1111 1111 |All
RETFIE s Return from interrupt enable 2 0000 0000 0001 oo00s |GIE/GIEH,
PEIE/GIEL
RETLW Return with literal in WREG 2 0000 1100 kkkk kkkk |None
RETURN s Return from Subroutine 2 0000 0000 oco1r ools |None
SLEEP — Go into Standby mode 1 0000 0000 oooo o011 |TO,PD

16-Bit Instruction Word

Mnemonic, Description Cycles Status Notes
Operands MSh LSb Affected
LITERAL OPERATIONS
ADDLW k Add literal and WREG 1 0000 1111 kkkk kkkk |C,DC,Z, OV,N
ANDLW k AND literal with WREG 1 0000 1011 kkkk kkkk |[Z,N
IORLW k Inclusive OR literal with WREG 1 0000 1001 kkkk kkkk |Z,N
LFSR f, k Move literal (12-bit) 2nd word 2 1110 1110 O0O0ff kkkk |None
to FSRx 1st word 1111 0000 kkkk kkkk
MOVLB k Move literal to BSR<3:0> 1 0000 0001 0000 kkkk |None
MOVLW k Move literal to WREG 1 0000 1110 kkkk kkkk |None
MULLW k Multiply literal with WREG 1 0000 1101 kkkk kkkk |None
RETLW k Return with literal in WREG 2 0000 1100 kkkk kkkk |[None
SUBLW k Subtract WREG from literal 1 0000 1000 kkkk kkkk |C,DC,Z, 0OV, N
XORLW k Exclusive OR literal with WREG 1 0000 1010 kkkk kkkk |Z,N
DATA MEMORY <> PROGRAM MEMORY OPERATIONS
TBLRD* Table Read 2 0000 0000 0000 1000 |None
TBLRD*+ Table Read with post-increment 0000 0000 0000 1001 |None
TBLRD*- Table Read with post-decrement 0000 0000 0000 1010 |None
TBLRD+* Table Read with pre-increment 0000 0000 0000 1011 [None
TBLWT~ Table Write 2(5) 0000 0000 0000 1100 |[None
TBLWT + Table Write with post-increment 0000 0000 0000 1101 [None
TBLWT*- Table Write with post-decrement 0000 0000 0000 1110 |[None
TBLWT+~ Table Write with pre-increment 0000 0000 0000 1111 [None

Nabor instrukcij

ADDLW ADD literal to W ADDWF ADD W to f
Syntax: [fabel] ADDLW k Syntax: [fabel] ADDWF f[,d[.a]
Operands: 0<k<255 Operands: 0=f=255
Operation: (W) +k = W de [g-ﬂ
ae [0
Status Affected: N, OV, C,DC, Z . - [0.1]
) Operation: (W) + (f) — dest
Encoding: IEIE eSS
o Status Affected: N, OV, C,DC, Z
Description: The contents of W are added to the .
8-bit literal 'k' and the result is Encoding: | 0010 | 01da | FEff | Efff |
placed in W. Description: Add W to register 'f'. If 'd"is 0, the
Words: 1 result is stored in W. If 'd' is 1, the
] result is stored back in register 'f
Cycles: 1 (default). If ‘a’ is 0, the Access
Q Cycle Activity: Bank will be selected. If ‘a’ is 1, the
Q1 Q2 Q3 Q4 BSH is used.
Decode Read Process Write to W Words: 1
literal 'k’ Data
Cycles: 1
Example: EDDLW 0x%15 Q Cycle Activity:
. Q1 Q2 Q3 Q4
Before Instruction
, Decode Read Process Write to
W= 0x10 register ' Data destination
After Instruction
W = 0x25 Example: ADDWF REG, 0, O
Before Instruction
W = 0x17
REG = OoxC2
After Instruction
W = 0xD9
REG = 0OxC2

ADDWFC ADD W and Carry bitto f ANDLW AND literal with W

Syntax: [label] ADDWFC f[.d[.a] Syntax: [label] ANDLW k
Operands: 0=f=255 Operands: 0=zk=255
de {8” Operation: (W) .AND. k — W
ae |U,
) L) Status Affected: N.Z
Operation: (W) + (f) + (C) — dest
Encoding: | 0000 | 1011 | kkkk | kkkk |
Status Affected: N,OV,C,DC, Z
. Description: The contents of W are ANDed with
Encoding: | cowo [ooas | eees | eece | the 8-bit literal 'k'. The result is
Description: Add W, the Carry Flag and data placed in W.
memory location 'f'. If 'd" is O, the Words: 1
result is placed in W. If 'd"is 1, the
result is placed in data memory loca- Cycles: 1
tion'f'. If ‘a’ is 0, the Access Bank Q Cycle Activity:
will be selected. If ‘a’is 1, the BSR Q1 Q2 Q3 Q4

will not be overridden. Decode Read literal Process Write to W

Words: 1 L Data
Cycles: 1
Q Cycle Activity: Example: ENDLW 0%5F
Q1 Q2 Q3 Q4 Before Instruction
Decode Read Process Write to w = OxA3
register 'f' Data destination After Instruction
w = 0Ox03
Example: ADDWFC REZ, 0, 1
Before Instruction
Carry bit = 1
REG = 0xD2
W = 0x4D
After Instruction
Carrybit = 0
REG = Ox02
W = 0x50

ANDWF AND W with f BC Branch if Carry
Syntax: [label] ANDWF f[.d[.a] Syntax: [label] BC n
Operands: 0=f<255 Operands: -128=n= 127
d f [0.1] Operation: if carry bit is "1’
ae[01] (PC)+2+2n—PC
Operation: (W) .AND. (f) — dest Status Affected: None
Status Affected: N.Z Encoding: | 1110 | 0010 | nnnn | nnnn |
Encoding: | o001 | oida | fEff | FEFE | Description: If the Carry bitis "1, then the
Description: The contents of W are AND’ed with program will branch.
register 'f'. If 'd"is 0, the result is The 2’s complement number 2n’ is
stored in W. If 'd" is 1, the result is added to the PC. Since the PC will
stored back in register'f' (default). If have incremented to fetch the next
‘a’ is 0, the Access Bank will be instruction, the new address will be
selected. If ‘a"is 1, the BSR will not PC+2+2n. This instruction is then
be overridden (default). a two-cycle instruction.
Words: 1 Words: 1
Cycles: 1 Cycles: 1(2)
Q Cycle Activity: Q Cycle Activity:
Q1 Q2 Q3 Q4 It Jump:
Decode Read Process Write to Qf Q2 Q3 Q4
register 'f' Data destination Decode Read literal | Process |Write to PC
n' Data
Example: ENDWF REG, 0, O No Mo No No
operation operation operation operation
Before Instruction
If No Jump:
W = 0x17
REG = o0xC2 Qf Q2 Q3 Q4
After Instruction Decode Fi'eacli II\teraI Process No
W - ox02 n Data operation
REG = 0OxCz2
Example: HERE BC 5
Before Instruction
PC = address (HERE)
After Instruction
If Carry 1;
PC address (HERE+12)

0;

If Carry
PC address [HERE+2)

BCF Bit Clear f
Syntax: [label] BCF f.bl.a]
Operands: 0=<f<255
0zb=7
ae=[0,1]
Operation: 0 — f
Status Affected: None
Encoding: | 1001 | bbba | EEEfE | FEEF |

Description:

Bit 'b" in register 'f' is cleared. If ‘a’

is 0, the Access Bank will be

selected, overriding the BSR value.

If *a’ = 1, then the bank will be
selected as per the BSR value

(default).
Words: 1
Cycles: 1
Q Cyecle Activity:
QA Q2 Q3 Q4
Decode Read Process Write
register 1 Data register '
Example: BCF FLAZ_REG, . a

Before Instruction
FLAG_REG = 0xC7

After Instruction
FLAG_REG = 0x47

BN Branch if Negative
Syntax: [label] BN n
Operands: -128=n<127
Operation: if negative bitis "1’

Status Affected:
Encoding:
Description:

Words:
Cycles:

Q Cycle Activity:
If Jump:

(PC)+2+2n— PC
None

| 1110 | 0110 | nnnn | nnnn |

If the Negative bitis "1, then the
program will branch.

The 2's complement number '2n’ is
added to the PC. Since the PC will
have incremented to fetch the next
instruction, the new address will be
PC+2+2n. This instruction is then
a two-cycle instruction.

.
1(2)

Q1 Q2 Q3 Q4
Decode Read literal Process Write to PC
n' Data
Nao Na No No
operation operation operation operation
If No Jump:
Q1 Q2 Q3 Q4
Decode Read literal Process No
n' Data operation
Example: HERE BN Jump

Before Instruction

PC

address (HERE)

After Instruction

If Negative
PC

If Negative
PC

1;

address (Jump)

0;

address (HERE+2)

BNC Branch if Not Carry BNN Branch if Not Negative
Syntax: [fabel] BNC n Syntax: [label] BNN n
Operands: -128=n<127 Operands: -128=n<=127
Operation: if carry bit is'0’ Operation: if negative bitis '0’
(PC)+2+2n—= PC (PC)+2+2n— PC
Status Affected: None Status Affected: None
Encoding: | 1110 | 0011 | nnnn | nnnn | Encoding: | 1110 | 0111 | nnnn | nnnn |
Description: If the Carry bit is 0", then the Description: If the Negative bitis 0", then the
program will branch. program will branch.
The 2's complement number 2n’ is The 2's complement number '2n’ is
added to the PC. Since the PC will added to the PC. Since the PC will
have incremented to fetch the next have incremented to fetch the next
instruction, the new address will be instruction, the new address will be
PC+2+2n. This instruction is then PC+242n. This instruction is then
a two-cycle instruction. a two-cycle instruction.
Words: 1 Words: 1
Cycles: 1(2) Cycles: 1(2)
Q Cycle Activity: Q Cycle Activity:
If Jump: If Jump:
8] Q2 Q3 Q4 Q1 Q2 Q3 Q4
Decode Read literal Process Write to PC Decode Read literal Process Write to PC
n' Data n' Data
No No No No No No No No
operation operation operation operation operation operation operation operation
If No Jump: If No Jump:
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
Decode Read literal Process No Decode Read literal Process Na
n' Data operation n' Data operation
Example: HERE BNC Jump Example: HERE BNN Jump

Before Instruction

PC

After Instruction

If Carry
PC

If Carry
PC

address (HERE)

0;
address (Jump)
1-

address (HERE+2)

Before Instruction

PC

After Instruction

If Negative
PC

If Negative
PC

address (HERE)

0;
1

address (Jump)

address (HERE+2)

BNOV Branch if Not Overflow BNZ Branch if Not Zero
Syntax: [label] BNOV n Syntax: [label] BNZ
Operands: -128<n=127 Operands: -128<n=127
Operation: if overflow bitis "0 Operation: if zero bitis "0’
(PC)+2+2n—PC (PC)+2+2n— PC
Status Affected: None Status Affected: None
Encoding: | 1110 | 0101 | nnnn | nnnn | Encoding: | 1110 | 0001 | nnnn | nnnn |
Description: If the Overflow bitis 0", then the Description: If the Zero bit is '0’, then the pro-
program will branch. gram will branch.
The 2's complement number "2n’ is The 2's complement number '2n’ is
added to the PC. Since the PC will added to the PC. Since the PC will
have incremented to fetch the next have incremented to fetch the next
instruction, the new address will be instruction, the new address will be
PC+2+2n. This instruction is then PC+2+2n. This instruction is then
a two-cycle instruction. a two-cycle instruction.
Words: 1 Words: 1
Cycles: 1(2) Cycles: 1(2)
Q Cycle Activity: Q Cycle Activity:
If Jump: If Jump:
Qf Q2 Q3 Q4 Q1 Q2 Q3 Q4
Decode Read literal Process Write to PC Decode Read literal Process Write to PC
n' Data n' Data
No No No No No No No No
operation operation operation operation operation operation operation operation
If No Jump: If No Jump:
Qf Q2 Q3 Q4 Q1 Q2 Q3 Q4
Decode Read literal Process No Decode Read literal Process No
n' Data operation n' Data operation
Example: HERE ENOV Jump Example: HERE BNZ Jump
Before Instruction Before Instruction
PC address (HERE) PC = address (HERE)
After Instruction After Instruction
If Overflow = 0 If Zero = 0
PC = address (Jump) PC = address (Jump)
If Overflow = ; If Zero = 1
PC = address (HERE+2) PC = address (HERE+2)

BTFSC Bit Test File, Skip if Clear BTFSS Bit Test File, Skip if Set
Syntax: [label]l BTFSC fb[,a] Syntax: [label]l BTFSS fb[,a]
Operands: 0=<f<255 Operands: 0=<f=<255
0<b<=7 0=b<=7
a=[0,1] a=[0,1]
Operation: skip if (f) =0 QOperation: skip if (f) =1
Status Affected: None Status Affected: None
Encoding: | 1011 | bbba | FEEE | FEEE | Encoding: | 1010 | bbba | FEEE | FEEE |
Description: If bit 'b" in register 1 is 0, then the Description: If bit 'b" in register 'f' is 1, then the
next instruction is skipped. next instruction is skipped.
If bit 'b"is 0, then the next instruction [f bit 'b" is 1, then the next instruction
fetched during the current instruction fetched during the current instruc-
execution is discarded, and a NOP is tion execution, is discarded and a
executed instead, making this a two- NOP is executed instead, making this
cycle instruction. If ‘a’is 0, the a two-cycle instruction. If ‘a’ is 0, the
Access Bank will be selected, over- Access Bank will be selected, over-
riding the BSR value. If ‘@’ = 1, then riding the BSR value. If ‘a’ =1, then
the bank will be selected as per the the bank will be selected as per the
BSR value (default). BSR value (default).
Words: 1 Words: 1
Cycles: 1(2) Cycles: 1(2)
Note: 3 cycles if skip and followed Note: 3 cycles if skip and followed
by a 2-word instruction. by a 2-word instruction.
Q Cycle Activity: Q Cycle Activity:
Qi Q2 Q3 Q4 Q1 Q2 Q3 Q4
Decode Read FProcess Data Mo Decode Read FProcess Data Mo
register 'f' operation register f' operation
If skip: If skip:
a1 Qz Qs Q4 Q1 Q2 Q3 Q4
No No No No No No No No
operation operation operation operation operation operation operation operation

If skip and follow

ed by 2-word instruction:

Qi Q2 Q3 Q4
No No No No
operation operation operation operation
No No No Mo
operation operation operation operation
Example: HERE BTFSC FLAG, 1, 0
FALSE
TRUE

Before Instruction

PC

address (HERE)

If skip and follow

ed by 2-word instruction:

Q1 Q2 Q3 Q4
No MNo MNao Mo
operation operation operation operation
No No No No
operation operation operation operation
Example: HERE BTFSS FLEG, 1, O
FALSE
TRUE

Before Instruction

PC

address (HERE)

After Instruction
If FLAG<1> 0;

address (TRUE)
1

PC
If FLAG<1> }
PC address (FALSE)

After Instruction
If FLAG=1>
PC

If FLAG=1>
PC

0;
address (FALSE)
1

address (TRUE)

BTG Bit Toggle f BOV Branch if Overflow

Syntax: [label] BTG f,b[,a] Syntax: [label] BOV n
Operands: 0=f=<255 Operands: -128=n= 127
0 ;_“ b<7 Operation: if overflow bitis "1’
ae[0.1] (PC) +2 +2n — PC
Operation: (f) — f Status Affected: None
Status Affected: None Encoding: | 1110 | 0100 | nnnn | nnnn |
Encoding: | o111 | bbba | fEff | Feff | Description: If the Overflow bitis "1’, then the
Description: Bit 'b' in data memory location 'f' is program will branch.
inverted. If ‘a’ is 0, the Access Bank The 2's complement number '2n’is
will be selected, overriding the BSR added to the PC. Since the PC will
value. If ‘a’ =1, then the bank will be have incremented to fetch the next
selected as per the BSR value instruction, the new address will be
(default). PC+2+2n. This instruction is then
Words: 1 a two-cycle instruction.
Cycles: 1 Words: 1
Q Cycle Activity: Cycles: 1(2)
Q1 Q2 Q3 Q4 Q Cycle Activity:
Decode Read Process Write If Jump:
register 'f' Data register 'f' Q1 Q2 Q3 Q4
Decode Read literal Process Write to PC
Example: BTG PORTC, 4, O n' Data
No No No No

Before Instruction: operation operation operation operation

PORTC = 0111 0101 [0x75]
After Instruction: If No Jump:
PORTC = 0110 0101 [OX65] Q1 Q2 Q3 Q4
Decode Read literal Process No
n' Data operation
Example: HERE BOV Jump

Before Instruction
PC = address (HERE)

After Instruction
If Overflow 1;
PC address (Jump)
0;
address (HERE+2)

If Overflow
PC

BZ Branch if Zero CALL Subroutine Call
Syntax: [label] BZ n Syntax: [label] CALL KkI[,s]
Operands: -128 = n<= 127 Operands: 0 =k = 1048575
Operation: if Zero bitis 1’ s<=[0.1]
(PC)+2+2n—=PC Operation: (PC)+4 = TOS,
Status Affected: None }; - P10<20:1 >
ifs =
Encoding: | 1110 | 0000 | nnnn | nnnn | (W) — WS,
Description: If the Zero bit is 1", then the pro- (STATUS) — STATUSS,
gram will branch. (BSR) — BSRS
The 2's complement number 2n" is Status Affected: None
added to the PC. Since the PC will oo
have incremented to fetch the next Encoding: .
instruction, the new address will be 1st word [-_k<7'0_>-] | 1o] 110s [lkqkkk | kkkkg
PC+2+2n. This instruction is then 2nd word(k<19:8>)[1111 |kyghide| kldek | Kk,
a two-cycle instruction. Description: Subroutine call of entire 2 Mbyte
Words: 1 memory range. First, return
) address (PC+ 4) is pushed onto the
Cycles: 1(2) return stack. 1f’s’ = 1, the W,
Q Cycle Activity: STATUS and BSR registers are
If Jump: also pushed into their respective
Q1 Q2 Q3 Q4 shadow registers, WS, STATUSS
Decode Read literal Process Write to PC and BSRS' If's’=0, no Llpdate.
P Data occurs (default). Then, the 20-bit
No No No No value .k I|s loaded |nTo PC<20:1>.
operation operation operation operation CALL is a two-cycle instruction.
If No Jump: Words: 2
Q1 Q2 Q3 Q4 Cycles: 2
Decode Read literal Process No Q Cycle Activity:
n' Data operation Q1 Q2 Q3 Q4
Decode Read literal | Push PC to | Read literal
Example: HERE BZ Jump 'k'<7:0>, stack k'<19:8>,
Before Instruction Write to PC
PC = address (HERE) No- No. No No.
After Instruction operation operation operation operation
If Zero = 1
" Zergb = %Fidress (Jump) Example: HERE CALL THERE, 1
PC = address (HERE+2) Before Instruction
PC = address (HERE)
After Instruction
PC = address (THERE)
TOS = address (HERE + 4)
WS = W
BSRS = BSR
STATUSS= STATUS

CLRF Clear f CLRWDT Clear Watchdog Timer

Syntax: [label] CLRF f[.a] Syntax: [label] CLRWDT
Operands: 0=f<255 Operands: None
ae=[0.1] Operation: 000h — WDT,
Operation: 000h — f 000h — WDT postscaler,
1-=7 1-=T0,
Status Affected: Z :’E)
Encoding: | 0110 | 101a | EEffE | EfEff | Status Affected: TO, PD
Description: Clears the contents of the specified Encoding: | o000 | 0000 | 0000 | 0200 |
register. If ‘@’ is 0, the Access Bank Description: CLRWDT instruction resets the
will be selected, overriding the BSR Watchdog Timer. It also resets the
value. If ‘a’ = 1, then the bank will postscaler of the WDT. Status bits
be selected as per the BSR value TO and PD are set.
(default). Words: 1
Words: L Cycles: 1
Cycles: 1 Q Cycle Activity:
Q Cycle Activity: e} Q2 Q3 Q4
Qi Q2 Q3 Q4 Decode No Process No
Decode Read Process Write operation Data operation
register 'f Data register 'f'
Example: CLRWDT
Example: CLRF FLAG REG,1 Before Instruction
Before Instruction WODT Counter = 7
FLAG_REG = OxBA After Instruction
After Instruction WODT Counter = 0x00
FLAG REG = 0x00 %T Postscaler = 0

PD 1

COMF Complement f CPFSEQ Compare f with W, skip if f = W
Syntax: [fabel] COMF f[d[.a] Syntax: [fabel] CPFSEQ f[,a]
Operands: 0<f=<255 Operands: 0=f=<255
de [0,1] a=[0,1]
a_"f [0,1] Operation: (f) — (W),
Operation: (f) — dest skip if (f) = (W)
Status Affected: N, Z (unsigned comparison)
Encoding: | 0001 | 11da | FEEE | EEEE | Status Affected: None
Description: The contents of register 'f are com- Encoding: | o110 | pota | fret | ffft |
plemented. If 'd" is 0, the resultis Description: Compares the contents of data
stored in W. If'd"is 1, the result is memory location 'f' to the contents
stored back in register 'f' (default). If of W by performing an unsigned
‘a’1s 0, the Access Bank will be subtraction.
selected, overriding the BSR value. It 'f' = W, then the fetched instruc-
If ‘a’ = 1, then the bank will be tion is discarded and a NOP is exe-
selected as per the BSR value cuted instead, making this a two-
(default). cycle instruction. If ‘a’ is 0, the
Words: 1 Acpess Bank will be selet?ied. over-
riding the BSR value. If 'a’ = 1, then
Cycles: 1 the bank will be selected as per the
Q Cycle Activity: BSR value (default).
Qi Q2 Q3 Q4 Words: 1
Decode Read Process Write to Cycles: 1(2)
register Data destination Note: 3 cycles if skip and followed
Example: COME REG, 0, D by a 2-word instruction.
Before Instruction Q Cycle Activity:
REG = 0x13
After Instruct Q1 Q2 Q3 Q4
e n: fuction Decode Read Process No
REG = a3 register 'f' Data operation
w = OXEC gis el pere
It skip:
Q1 Q2 Q3 Q4
No Mo No MNo
operation operation operation operation
It skip and followed by 2-word instruction:
Q1 Q2 Q3 Q4
Mo Mo No Mo
operation operation operation operation
No No No No
operation opetration operation operation
Example: HERE CPFSEQ REG, 0
NEQUAL
EQUAL
Before Instruction
PC Address = HERE
W = 7
REG = 7
After Instruction
If REG = W
PC = Address (EQUAL)
If REG = W
PC = Address (NEQUAL)

CPFSGT

Compare f with W, skip if f > W

Syntax:
Operands:

Operation:

Status Affected:
Encoding:
Description:

Words:
Cycles:

Q Cycle Activity:

[label] CPFSGT f[.a]
0<f<255

a=[01]

() — (W),

skip if (f) > (W)
(unsigned comparison)
None

| 0110 | DlOal fEEf | fEEf |

Compares the contents of data
memory location 'f' to the contents
of the W by performing an
unsigned subtraction.

If the contents of 'f' are greater than
the contents of WREG, then the
fetched instruction is discarded and
a NOF is executed instead, making
this a two-cycle instruction. If ‘a’ is
0, the Access Bank will be
selected, overriding the BSR value.
It ‘a’ = 1, then the bank will be
selected as par the BSR value
(default).

1

1(2)

Note: 3 cycles if skip and followed
by a 2-word instruction.

Q1 Q2 Q3 Q4
Decode Read Process No
register 'f' Data operation
It skip:
Q1 Q2 Q3 Q4
No No No No
operation operation operation operation

If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4
No MNo No MNo
operation operation operation operation
No No No No
operation operation operation operation
Example: HERE CPF33T REG, 0
NGREATER
GREATER

Before Instruction

PC = Address [HERE)
W = ?
After Instruction
If REG W
PC = Address (GREATER)
If REG W,
PC Address (NGREATER)

CPFSLT Compare f with W, skip if f < W
Syntax: [label] CPFSLT f[,a]
Operands: 0=f<255

ae [01]
Operation: (f) — (W),

skip if (f) < (W)

Status Affected:
Encoding:
Description:

Words:
Cycles:

Q Cycle Activity:

Q1

(unsigned comparison)
None

| 0110 | OOOal fEff | ffff |

Compares the contents of data
memaory location 'f' to the contents
of W by performing an unsignad
subtraction.

If the contents of 'f' are less than
the contents of W, then the fetched
instruction is discarded and a NOP
is executed instead, making this a
two-cycle instruction. If ‘a’is 0, the
Access Bank will be selected. If 'a’
is 1, the BSR will not be overridden
(default).

1

1(2)
Note: 3 cyclas if skip and followed

by a 2-word instruction.

Q2 Q3 Q4

Decode

Read Process No
register ' Data operation

If skip:
Q1

Q2 Q3 Q4

No
operation

No No No
operation operation operation

If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4
Na No No No
operation operation operation operation
No No No No
operation operation operation operation
Exampla: HERE CPFSLT REG, 1
NLESS
LESS

Before Instruction

PC
W

Address (HERE)
?

After Instruction

If REG
PC
If REG
PC

W;
= Address (LEsSS)
= W,
Address (NLESS)

M

DAW Decimal Adjust W Register DECF Decrement f

Syntax: [label] DAW Syntax: [label] DECF f[.d[a]
Operands: None Operands: 0=f=<255
Operation: If [W<3:0> 9] or [DC = 1] then d=[0.1]
(W<3:05) + 6 — W<3:05; ae [0.1]
else Operation: (f) = 1 — dest
(W<3:0>) — W<3:0>; Status Affected: ~ C, DC, N, OV, Z
If [W<7:4> >0] or [C = 1] then Encoding: | 0000 | 0lda | ffff | ffff |
(W<T7:45) + 6 — W<T:4>; Description: Decrement register 'f'. If 'd' is O, the
else result is stored in W. If 'd"is 1, the
(W<7:45) - W<7:4>; result is stored back in register '
Status Affected: G (default). If 'a’ is 0, the Access
. Bank will be selected, overriding
Encoding: | 0000 | 00oo | 0000 | o1t | the BSR value. If 'a’ = 1, then the
Description: DAW adjusts the eight-bit value in bank will be selected as per the
W, resulting from the earlier addi- BSR value (default).
tion of two variables (each in Words: 1
packed BCD format) and produces
a correct packed BCD result. Cycles: 1
Words: 1 Q Cycle Activity:
Cycles: , Q1 Q2 Q3 Q4
o Decode Read Process Write to
Q Cycle Activity: register 'f' Data destination
Q1 Q2 Q3 Q4
Decode Read Process Write Example: DECE CNT, 1, O
register W Data W
Before Instruction
Example1: Daw CNT = Oxo01
Before Instruction z = 0
W - OXAS After Instruction
C - 0 CNT = 0x00
DC = 0 4 =
After Instruction
W = 0x05
Cc = 1
DC = 0
Example 2:
Before Instruction
W = OxCE
Cc = 0
DC = 0
After Instruction
W = 0x34
C = 1
DC = 0

DECFSZ Decrement 1, sKip if 0

Syntax: [label] DECFSZ f[.d[.all
Operands: 0=f<255

d=[0,1]

a=[0,1]
Operation: (f) — 1 — dest,

skip if result =0
Status Affected: None

Encoding: | 0010 |llda| EEEE | fEEE |

Description: The contents of register 'f' are dec-
remented. If 'd"is 0, the result is
placed in W. If 'd"is 1, the result is
placed back in register 'f' (default).
If the result is 0, the next instruc-
tion, which is already fetched, is
discarded, and a NOP is executed
instead, making it a two-cycle
instruction. If 'a" is 0, the Access
Bank will be selected, overriding
the BSR value. If 'a’ = 1, then the
bank will be selected as per the
BSR value (default).

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed
by a 2-word instruction.

Q Cycle Activity:

a1 Q2 Q3 Q4
Decode Read Process Write to
register 'f' Data destination
It skip:
a Q2 Q3 Q4
No No No No

operation aperation operation operation

If skip and followed by 2-word instruction:
Qi Q2 Q3 Q4
No No No No
operation aperation operation operation
No No No No

operation aperation operation operation

Example: HERE DECFSZ CNT, 1, 1
GOTO LOOP
CONTINUE

Before Instruction

PC = Address (HERE)
After Instruction
CNT = CNT-1
FCNT = O
PC = Address (CONTINUE)
IFCNT = 0;
PC = Address (HERE+2)

DCFSNZ Decrement f, skip if not 0
Syntax: [label] DCFSNZ f[d[.a]
Operands: 0<f=255

de [01]

a=[01]
Operation: (f) — 1 — dest,

sKip if result = 0
Status Affected: Naone

Encoding: | 0100 |llda| EEEE | EEEE |

Description: The contents of register 'f' are dec-
remented. If 'd"is 0, the result is
placed in W. If 'd"is 1, the result is
placed back in register 'f' (default).
If the result is not 0, the next
instruction, which is already
fetched, is discarded, and a NOP is
executed instead, making it a two-
cycle instruction. If 'a’ is 0, the
Access Bank will be selected,
overriding the BSR value. If 'a’ =1,
then the bank will be selected as
per the BSR value (default).

Words: 1

Cyclas: 1(2)
Note: 3 cycles if skip and followed
by a 2-word instruction.

Q Cycle Activity:

a1 Q2 Q3 Q4
Decode Read Process Write to
register 'f' Data destination
It skip:
o] Q2 Q3 Q4
No No No No

operation operation operation operation

If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4
No No No No
operation operation operation operation
No No No No

operation operation operation operation

Example: HERE DCFSNZ TEMP, 1, 0
ZERO
NZERO

Before Instruction

TEMP = 7
After Instruction
TEMP = TEMP -1,
If TEMP = O
PC = Address (ZERO)
If TEMP 0O
FC = Address (NZERG)

GOTO Unconditional Branch INCF Increment f
Syntax: [label] GOTO k Syntax: [label] INCF f[d[.a]
Operands: 0=k =1048575 Operands: 0=f=255
Operation: k — PC<20:1> de {SH
ae s
Status Affected: None) -
Operation: (f) + 1 — dest
Encoding:)
1stword (k<7:0>) | 1110 | 1111 | kokkk | Kk, Status Affected: ~ C,DC, N, OV, Z
2nd word(k<19:8>) 1111 |k gkkk| kkkk kkkkg Encoding: | 0010 | 10da | FEFF | FFfF |
Description: GOTC allows an unconditional Description: The contents of register 'f' are
branch anywhere within entire incremented. If 'd' is 0, the result is
2 Mbyte memory range. The 20-bit placed in W. If'd"is 1, the result is
value 'k’ is loaded into PC<20:1>. placed back in register 'f' (default).
GOTO is always a two-cycle If'a’ is O, the Access Bank will be
instruction. selected, overriding the BSR value.
Words: 2 If'a’ = 1, then the bank will be
selected as per the BSR value
Cycles: 2 (default).
Q Cycle Activity: Words: 1
Q1 Q2 Q3 Q4 Cycles: ,
Decode Read literal No Read literal .
'k'<7:0=, | operation | 'k'<19:8>, Q Cycle Activity:
Write to PC Q1 Q2 Q3 Q4
No No No No Decode Read Process Write to
operation operation operation operation register 'f' Data destination
Examgle: GOTO THERE Examgg; INCE CNT, 1, ©
After Instruction Before Instruction
PC = Address (THERE) CNT = oxFF
zZ = 0
c = ?
DC = 7
After Instruction
CNT = 0Ox00
z = 1
c = 1

DC 1

INCFSZ Increment f, skip if 0 INFSNZ Increment 1, skip if not 0
Syntax: [label] INCFSZ f[d[a] Syntax: [label] INFSNZ f[d][.a]
Operands: 0<f<255 Operands: 0<f<255

de [0,1] de [0,1]

ae [0,1] ae [0,1]
Operation: (f) + 1 — dest, Operation: (f) + 1 — dest,

Status Affected:
Encoding:
Description:

Words:
Cycles:

Q Cycle Activity:

skip if result =0
None

| 0011 | 11lda | fEff | ffff |

The contents of register ' are
incremented. If 'd"is 0. the result is
placed in W. If 'd" is 1, the resultis
placed back in register 'f'. (default)
If the result is 0, the naxt instruc-
tion, which is already fetched, is
discarded, and a NOP is executed
instead, making it a two-cycle
instruction. If 'a’ is 0, the Access
Bank will be selected, overriding
the BSR value. If 'a’ = 1, then the
bank will be selected as per the
BSR value (default).

1

1(2)

Note: 3 cycles if skip and followed
by a 2-word instruction.

Q1 Q2 Q3 Q4
Decode Read Process Write to
register 'f' Data destination
If skip:
Q1 Q2 Q3 Q4
No No No No
operation operation operation operation

If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4
No No No No
operation operation operation operation
No No No No
operation operation operation operation
Example: HERE INCFSZ CNT, 1, O
NZERO
ZERO

Before Instruction

PC

= Address (HERE)

After Instruction

CNT
If CNT
PC

If CNT
PC

CNT +1

0:

Address (ZERO)
0:

Address (NZERO)

[T T

Status Affected:
Encoding:
Description:

Words:
Cycles:

Q Cycle Activity:

skip if result = 0
None

| 0100 | 10da | fEff | ffff |

The contents of register ' are
incremented. If 'd"is 0. the result is
placed in W. If 'd"is 1, the result is
placed back in register 'f' (default).
If the result is not 0, the next
instruction, which is already
fetched, is discarded, and a NOF is
executed instead, making it a two-
cycle instruction. If 'a’ is 0, the
Access Bank will be selected, over-
riding the BSR value. If'a’ = 1, then
the bank will be selected as per the
BSR value (default).

1

1(2)

Note: 3 cycles if skip and followed
by a 2-word instruction.

Q1 Q2 Q3 Q4
Decode Read Process Write to
register 'f' Data destination
If skip:
Q1 Q2 Q3 Q4
No No No No
operation operation operation operation

If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4
No No No No
operation operation operation operation
No No No No
operation operation operation operation
Example: HERE INFSNZ REG, 1, 0
ZERC
NZERO

Before Instruction

PC

= Address (HERE)

After Instruction

REG
If REG
PC

If REG
PC

s

REG + 1

0;

Address (NZERC)
0;

Address (ZEROD)

IORLW Inclusive OR literal with W IORWF Inclusive OR W with 1

Syntax: [label] 10RLW Kk Syntax: [label] IORWF 1[,d][,a]
Operands: 0=k=255 Operands: 0=f=<255
Operation: (W) .OR. k — W S 5 EH
Status Affected: N, Z , o
Operation: (W) .OR. (f) — dest
Encoding: | 0000 | 1001 | kkkk | kkkk |
Status Affected: N, Z
Description: The contents of W are OR’ed with .
the eight-bit literal 'k'. The result is Encoding: | ooor | ooaa | eeer | ceer |
placed in W. Description: Inclusive OR W with register 'f'. If 'd'
Words: 1 is 0, the result is placed in W. If 'd'
' is 1, the result is placed back in
Cycles: 1 register 'f' (default). If 'a’ is 0, the
Q Cycle Activity: Access Bank will be selected, over-
o1 Q2 Q3 Q4 riding the BSR value. If'a’ =1, then
Decode Read Process Write to W the bank w”.l be Selected as per the
literal ' Data BSR value (default).
Words: 1
Example: IORLW 0x25 Cycles: 1
Before Instruction Q Cycle Activity:
W = Ox9A Q1 Q2 Q3 Q4
After Instruction Decode Read Process Write to
W - OXBF register 'f' Data destination
Example: IORWF RESULT, 0, 1
Before Instruction
RESULT = 0x13
W = Ox91

After Instruction
RESULT = 0x13
W = 0x93

LFSR Load FSR

Syntax: [label] LFSR fk

Operands: 0=f=z2
0=k =4095

Operation: k — FSRf

Status Affected: None

Encoding: 1110 1110 00ff |kq kkk

1111 0000 | kgkkk | kkkk

Description: The 12-hit literal 'k' is loaded into
the file select register pointed to
by 'f'.

Words: 2

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode Read literal Process Write
k' MSB Data literal 'k’
MSB to
FSRH
Decode Read literal Process Write literal

k' LSB Data 'k' to FSRIL

Example:

LFSR 2, 0xX3AB

After Instruction

FSR2H
FSR2L

= 0x03
= OxAB

MOVF Move f
Syntax: [label] MOVF f{[d][a]
Operands: 0=f=<255
de [0,1]
a= [0,1]
Operation: f — dest
Status Affected: N, Z
Encoding: | 0101 | ooda | EEEE | FEEE |
Description: The contents of register 'f' are
moved to a destination dependent
upon the status of 'd. If 'd" is O, the
resultis placed in W. If 'd"is 1, the
result is placed back in register 'f'
(default). Location 'f' can be any-
where in the 256 byte bank. If 'a’ is
0, the Access Bank will be
selected, overriding the BSR value.
If *a’ = 1, then the bank will be
selected as per the BSR value
(default).
Words: 1
Cycles: 1
Q Cycle Activity:
Q1 Q2 Q3 Q4
Decode Read Process Write W
register 'f' Data
Example: MOVF REG, 0, 0
Before Instruction
REG = oxe2
W = OXFF
After Instruction
REG = 0x22
W = 0x22

MOVFF Move fto{ MOVLB Move literal to low nibble in B!
Syntax: [label] MOVFF 1.1y Syntax: [label] MOVLB k
Operands: 0 =1y, <4095 Operands: 0<k<255
0<fy<4095 Operation: k — BSH
Operation: (fs) = fq Status Affected: None
Status Affected: ~ None Encoding: | 0000 | oon1 | kkkk | Kkk
Encodmg:_ Description: The 8-bit literal 'k’ is loaded into
1st word (source) 1100 | £££ff | ££ff | £fffg the Bank Select Register (BSR)
2nd word (destin.) | 1111 fEEf | ££fff | £££E, TomE A
. i - Words: 1
Description: The contents of source register 'f,'
are moved to destination register Cycles: 1
"Iy Location of source 'fg' can be Q Cycle Activity:
anywhere in the 4096 byte data 01 Q2 Q3 Q4
space (000h to FFFh), and location Decode Read literal Process Write
of destination 'f4' can also be any- K Data literal 'k t
where from 000h to FFFh. BSR
Either source or destination can be
W (a useful special situation). Example: oviE s
MOVFETF is particularly useful for Lxample:
transferring a data memory location Before Instruction
to a paripheral register (such as the BSRregister = 0x02
transmit buffer or an /O port). After Instruction
The MOVFF instruction cannot use BSRregister = 0x05
the PCL, TOSU, TOSH or TOSL as
the destination register.
Note: The MOVFF instruction
should not be used to mod-
ify interrupt settings while
any interrupt is enabled.
See Section 8.0 for more
information.
Words: 2
Cycles: 2(3)
Q Cycle Activity:
Q1 Q2 Q3 Q4
Decode Read Process Mo
register 'f' Data operation
(src)
Decode MNa MNo Write
operation operation register 'f'
No dummy (dest)
read
Example: MOVEFF REG1, REG2
Before Instruction
REGH1 = 0x33
REG2 = 0ox1
After Instruction
REGH1 = 0x33,
REG2 = 0x33

MOVLW Move literal to W MOVWF Move W to f

Syntax: [label] MOVLW Kk Syntax: [label] MOVWF f[.a]
Operands: 0<k=255 Operands: 0<f=255
Operation: k— W ae[01]
Status Affected: None Operation: (W) — 1
Encoding: | 0000 | 1110 | Kikk | Kkkk | Status Affected: None
Description: The eight-hit literal 'k' is loaded Encoding: | o110 | ti1a | fEff | fEff |
into W. Description: Move data from W to reqister 'f'.
Words: 1 Location 'f' can be_\ gpywhere in the
256 byte bank. If ‘a’is 0, the
Cycles: 1 Access Bank will be selected, over-
Q Cycle Activity: riding the BSR value. If‘a’ =1, then
Q1 Q2 Q3 Q4 the bank will be selected as per the
Decode Read Process Write to W BSR value (default).
literal 'k' Data Words: 1
Cycles: 1
Example: MOVLW 0%5A Q Cycle Activity:
After Instruction Q1 Q2 Q3 Q4
W = Ox5A Decode Read Process Write
register ' Data register 'f
Example: MOVWF REG, O
Before Instruction
W = Ox4F
REG = OxFF
After Instruction
W = Ox4F
REG = Ox4F

MULLW Multiply Literal with W
Syntax: [label] MULLW Kk
Operands: 0=k<=255
Operation: (W) x k - PRODH:PRODL
Status Affected: None
Encoding: | 0000 | 1101 | kkkk | kkkk |
Description: An unsigned multiplication is car-
ried out between the contents of
W and the 8-bit literal 'k'. The
16-bit result is placed in
PRODH:PRODL register pair.
PRODH contains the high byte.
W is unchanged.
None of the status flags are
affected.
Note that neither overflow nor
carry is possible in this opera-
tion. A zero result is possible but
not detected.
Words: 1
Cycles: 1
Q Cycle Activity:
Q1 Q2 Q3 Q4
Decode Read Process Write
literal 'k' Data registers
PRODH:
PRODL
Example: MULLW 0xC4
Before Instruction
W = 0OxE2
PRODH = ?
PRODL = ?
After Instruction
W = 0OxE2
PRODH = 0OxAD
PRODL = 0x08

MULWF Multiply W with f
Syntax: [label] MULWF f{[,a]
Operands: 0=f=<255
a= [0,1]
Operation: (W) x (f) - PRODH:PRODL
Status Affected: None
Encoding: | 0000 | 00la | EEFE | FEEE |
Description: An unsigned multiplication is car-
ried out between the contents of
W and the register file location 'f'.
The 16-bit result is stored in the
PRODH:PRODL register pair.
PRODH contains the high byte.
Both W and 'f" are unchanged.
None of the status flags are
affected.
Note that neither overflow nor
carry is possible in this opera-
tion. A zero result is possible but
not detected. If ‘a’ is 0, the
Access Bank will be selected,
overriding the BSR value. If
‘a’ =1, then the bank will be
selected as per the BSR value
(default).
Words: 1
Cycles: 1
Q Cycle Activity:
Q1 Q2 Q3 Q4
Decode Read Process Write
register 'f' Data registers
PRODH:
PRODL

Example: MULWF REG, 1
Before Instruction
W = 0xC4
REG = 0xB5
PRODH = 7
PRODL = 7
After Instruction
W = 0xC4
REG = 0xB5
PRODH = OxBA
PRODL = 0x94

NEGF Negate f NOP No Operation
Syntax: [label] NEGF f[.a] Syntax: [label] NOP
Operands: 0=f<255 Operands: None

af [0.1] Operation: No operation
Operation: () +1 -1 Status Affected: None
Status Affected: N, OV, C, DC, Z Encoding: 0000 0000 0000 0000
Encoding: | 0110 | 110a | FEEE | FEEE | 1111 | oo | xxex | xxxx
Description: Location ' is negated using two's Description: No operation.

complement. The resultis placed in Words: 1

the data memory location f'. If 'a’ is Cveles: 1

0, the Access Bank will be ycles:

selected, overriding the BSR value. Q Cycle Activity:

If'a’ = 1, then the bank will be Q1 Q2 Q3 Q4

selected as per the BSR value. Decode No No No
Words: 1 operation operation operation
Cycles: 1 . |

xample:
Q Cycle Activity:
Q1 Q2 Q3 Q4
. None.
Decode Read Process Write

register 'f' Data register 'f'

Example: NEGF REG, 1

Before Instruction

REG

= 0011 1010 [OX3A]

After Instruction

REG

= 1100

0110 [0xC8]

POP

Pop Top of Return Stack

Syntax: [label] POP
Operands: None
Operation: (TOS) — bit bucket
Status Affected: None
Encoding: | 0000 | 0000 | 0000 | 0110 |
Description: The TOS value is pulled off the
return stack and is discarded. The
TOS value then becomes the previ-
ous value that was pushed onto the
return stack.
This instruction is provided to
enable the user to properly manage
the return stack to incorporate a
software stack.
Words: 1
Cycles: 1
Q Cycle Activity:
Q1 Q2 Q3 Q4
Decode No POPTOS No
operation value operation
Example: POP
GOTO NEW
Before Instruction
TOS = 0031A2h
Stack (1 level down) = 014332h
After Instruction
TOS = 014332h
PC = NEW

PUSH Push Top of Return Stack
Syntax: [labell] PUSH
Operands: None
Operation: (PC+2) = TOS
Status Affected: None
Encoding: | 0000 | 0000 | 0000 | ol
Description: The PC+2 is pushed onto the to
the return stack. The previous T
value is pushed down on the st
This instruction allows to implemr
a software stack by modifying T¢
and then push it onto the return
stack.
Words: 1
Cycles: 1
Q Cycle Activity:
Q1 Q2 Q3 Q4
Decode |PUSHPC+2 No No
onto return | operation operatic
stack
Example: PUSH
Before Instruction
TOS = 00345Ah
PC = 000124h
After Instruction
PC = 000126h
TOS = 000126h
Stack (1 level down) = 00345Ah

RCALL Relative Call RESET Reset

Syntax: [label] RCALL n Syntax: [label] RESET

Operands: -1024 =n <1023 Operands: None

Operation: (PC)+2 —>TOS, Operation: Reset all registers and flags that
(PC)+2+2n— PC are affected by a MCLR Reset.

Status Affected: None Status Affected: All

Encoding: | 1101 | 1nnn | nnnn | nnnn | Encoding: | 0000 | 0000 | 1111 | 1111 |

Description: Subroutine call with a jump up to Description: This instruction provides a way to
1K from the current location. First, execute a MCLR Reset in software.
return address (PC+2) is pushec} Words: 1
onto the stack. Then, add the 2's
complement number '2n’ to the PC. Cycles: 1
Since the PC will have incremented Q Cycle Activity:
to fetch the next instruction, the Q1 Q2 Q3 Q4
new gddresg Wi l.l be PC+2+2n. Decode Start No No
Th|s |n§truc1|on is a two-cycle reset operation oparation
instruction.

Words: 1 Example: RESET

Cycles: 2 After Instruction

Q Cycle Activity: Registers = Reset Value

o1 Qs a3 a4 Flags* = ResetValue
Decode Read literal Process Write to PC
n' Data
Push PC to
stack
No No No No
operation operation operation operation

Example: HERE RCALL Jump

Before Instruction
PC = Address (HERE)
After Instruction

PC = Address (Jump)
TOS= Address (HERE+2)

RETFIE Return from Interrupt RETLW Return Literal to W

Syntax: [label] RETFIE [s] Syntax: [fabel] RETLW k
Operands: se= [0,1] Operands: 0=k=255
Operation: (TOS) — PC, Operation: K— W,
1 — GIE/GIEH or PEIE/GIEL, (TOS) — PC,
ifs=1 PCLATU, PCLATH are unchanged
(WS) - W, Status Affected: None
(STATUSS) — STATUS, .
(BSRS) — BSR, Encoding: | 0000 | 1100 | kkkk | kkkk |
PCLATU, PCLATH are unchanged. Description: W is loaded with the eight-bit literal
Status Affected: ~ GIE/GIEH, PEIE/GIEL. k' The program counter is loaded
. from the top of the stack (the return
Encoding: | 0000 | 0000 | ooot | 000s | addrass). The high address latch
Description: Return from Interrupt. Stack is (PCLATH) remains unchanged.
popped and Top-of-Stack (TOS) is Words: 1
loaded into the PC. Interrupts are '
enabled by setting either the high Cycles: 2
or low priority global interrupt Q Cycle Activity:
enable bit. If 's” = 1, the contents of Q1 Q2 Q3 Q4
the shadow registers WS, -
Decode Read Process |pop PC from
STATUSS and BSRS are loaded ¢ ftora RSN v
into their corresponding registers, oW
W, STATUS and BSR. If 's' =0, no No No No No
update of these registers occurs operation operation | operation operation
(default).
Words: 1 Example:
Cycles: 2
. CALL TRBLE ; W contains table
Q Cycle Activity: . offset value
a1 Q2 Q3 Q4 ; W now has
Decode No No pop PC from i table wvalue
operation operation stack :
Set GIEH or TRBLE
ADDWF PCL ; W = offset
GIEL RETLW kO Begi tabl
No No No No EETLH k1 Sgin Rabse
operation operation operation operation . !

Example: RETFIE 1 RETLW kn ; End of table
After Interrupt
PC = TOS Before Instruction
W = WS . _
BSR — BSRS W = 0Ox07
STATUS . = STATUSS After Instruction
GIE/GIEH, PEIE/GIEL = 1

W = value of kn

RETURN Return from Subroutine RLCF Rotate Left f through Carry
Syntax: [label] RETURN [s] Syntax: [labell RLCF f[d[,a]
Operands: se= [0,1] Operands: 0=f=255
Operation: (TOS) = PC, de[0.1]
”c s = 1 ae [0.1]
(WS) — W, Operation: (f<n>) — dest<n+1>,
(STATUSS) — STATUS, (f<7>) — C,
(BSRS) — BSR, (C) — dest<0=
PCLATU, PCLATH are unchanged Status Affected: C.N.Z
Status Affected: ~ None Encoding: | 0011 | 01da | FEEE | FEEE
Encoding: | 0000 | 0ooo | ooot | ools | Description: The contents of register 'f' are
Description: Return from subroutine. The stack rotated one bit to the left through
is popped and the top of the stack the Carry Flag. If 'd" is 0, the result
(TOS) is loaded into the program is placed in W. If 'd" is 1, the result
counter. If 's'= 1, the contents of the is stored back in register 'f
shadow registers WS, STATUSS (default). If ‘a” is 0, the Access
and BSRS are loaded into their cor- Bank will be selected, overriding
responding registers, W, STATUS the BSR value. If 'a’ = 1, then the
and BSR. If ‘s’ = 0, no update of bank will be selected as per the
these registers occurs (default). BSR value (default).
Words: 1
Cycles: 2
o Words: 1
Q Cycle Activity:
a1 Q2 Q3 Q4 Cycles: 1
Decode No Process |pop PC from Q Cycle Activity:
operation Data stack Q1 Q2 Q3 Q4
No No No No Decode Read Process Write to
operation operation operation operation register 'f' Data destination
Example: RLCF REZ, 0, O
Example: RETURN Before Instruction
After Interrupt REG = 1110 o110
PC =TOS c = 0
After Instruction
REG = 1110 0110
W 1100 1100

c

RLNCF Rotate Left f (no carry) RRCF Rotate Right f through Carry
Syntax: [labell RLNCF f[,d[,a] Syntax: [label] RRCF f[.d[.a]
Operands: 0=f=255 Operands: 0=f<255
de [0,1] de [0,1]
e [0,1] ae= [0,1]
Operation: (f<n>) — dest<n+1>, Operation: (f<n>) — dest<n-1>,
(f<7>) — dest<0=> (f<0>) — C,
Status Affected: N, Z (C) — dest<7>
Encoding: | 0100 | 01da | FEEE | FEEE | Status Affected: C. N, Z
Description: The contents of register 'f' are Encoding: | oo1r | ooda | esee | e |
rotated one bit to the left. If 'd"is 0, Description: The contents of register 'f' are
the result is placed in W. If 'd"is 1, rotated one bit to the right through
the result is stored back in register the Carry Flag. If 'd" is 0, the result
' (default). If 'a’ is 0, the Access is placed in W. If 'd"is 1, the result
Bank will be selected, overriding is placed back in register 'f'
the BSR value. If 'a’ is 1, then the (default). If ‘a’ is 0, the Access
bank will be selected as per the Bank will be selected, overriding
BSR value (default). the BSR value. If 'a’ is 1, then the
. bank will be selected as per the
ster f
BSR value (dfault).
Words: 1
Cycles: 1 Word
ords: 1
Q Cycle Activity:
Qf Q2 Q3 Q4 Cycles: 1
Decode Read Process Write to Q Cycle Activity:
register 'f' Data destination Q1 Q2 Q3 Q4
Decode Read Process Write to
Example: RLNCF REG, 1, O register 'f Data destination
Before Instruction
REG = 1010 1011 Example: RRCF REG, 0, O
After Instruction Before Instruction
REG = 0101 0111 REG = 1110 0110
C = 0
After Instruction
REG = 1110 0110
W 0111 0011

C 0

RRNCF Rotate Right f (no carry) SETF Setf
Syntax: [labei] RRNCF f[.d[.a] Syntax: [label] SETF f[,a]
Operands: 0=f=255 Operands: 0=f=255
de [01] ae=[0,1]
a=[01] Operation: FFh — f
Operation: (f<n>) — dest<n-1>, Status Affected: None
(f<0>) — dest<7> .
Encoding: | 0110 | 100a | FEEE | FEEE |
Status Affected: N, Z
. Description: The contents of the specified regis-
Encoding: | 0100 | ooda | ffet | ffet | ter are set to FFh. If 'a’ is 0, the
Description: The contents of register 'f' are Access Bank will be selected, over-
rotated one bit to the right. If 'd"is O, riding the BSR value. If 'a’ is 1, then
the result is placed in W. If'd"is 1, the bank will be selected as per the
the result is placed back in register BSR value (default).
'f' (default). If 'a’ is 0, the Access Words: 1
Bank will be selected, overriding '
the BSR value. If 'a’ is 1, then the Cycles: 1
bank will be selected as per the Q Cycle Activity:
BSR value (default). Q1 Q2 Q3 Q4
Decode Read Process Write
register 'f Data register 'f
Words: 1
Cycles: 1 Example: SETF REG, 1
Q Cycle Activity: Before Instruction
o1 Q2 Q3 Q4 REG . = Ox5A
Decode Read Process Write to After lnsfrucuon
register 'f' Data destination REG = OxFF
Example 1: RENCF REG, 1, O
Before Instruction
REG = 1101 0111
After Instruction
REG = 1110 1011
Example 2: RENCF REG, 0, O
Before Instruction
W = ?
REG = 1101 0111
After Instruction
W = 1110 1011
REG = 1101 0111

SLEEP Enter SLEEP mode SUBFWB Subtract f from W with borrow
Syntax: [label] SLEEP Syntax: [label] SUBFWE f[,d[.a]
Operands: None Operands: 0=<f<255
Operation: 00h — WDT, de [0.1]
0 — WDT postscaler, ae [0.1] _
1 =710, Operation: (W) = () = (C) — dest
0—-PD Stalus Affected: N, OV, C, DC, Z
Status Affected: TO, PD Encoding: | 0101 | 01lda | EEEE | FEEE |
Encoding: | vooa | oooo | gooo | oo1t | Description: Subtract register ' and carry flag
Description: The power-down status bit (PD) is {borrow) from W (2's complement
cﬁlred. The time-out status bit method). If 'd' is 0, the result is
(TO) is set. Watchdog Timer and stored in W. It 'd"is 1, the resultis
its postscaler are cleared. stored in register 'f' (default). If 'a’ is
The processor is put into SLEEP 0, the Access Bank will be selected,
mode with the oscillator stopped. overriding the BSR value. It 'g'is 1,
Words: 1 then the bank will be selected as
per the BSR value (default).
Cycles: 1
Words: 1
Q Cycle Activity: Cveles:]
at Q2 Q3 a4 veess
Decode No Process Goto Q Cycle Activity:
operation Data sleep Q1 Q2 Q3 Q4
Decode Read Process Write to
Example: SLEED register '’ Data destination
Before Instruction Example 1: SUBFWE REZ, 1, O
o = 2 '
D - 2 Befo;eElgstrucjlon ,
After Instruction W - s
o=t C =
= 0 After Instruction
1 1fWDT causes wake-up, this bit is cleared. REG = FF
W = 2
C = 0
Z = 0
N = 1 :resultis negative
Example 2: SUBFWB REG, 0, O
Before Instruction
REG = 2
W = 5
C = 1
After Instruction
REG = 2
W = 3
c = 1
Z = 0
N = 0 ;resultis positive
Example 3: SUBFWB REG, 1, O
Before Instruction
REG = 1
W = 2
C = 0
After Instruction
REG = 0
W = 2
C = 1
Z = 1 ;resultis zero
N = 0

SuUBLW Subtract W from literal SUBWF Subtract W from f

Syntax: [label] SUBLW Kk Syntax: [label] SUBWF f[,d[,a]
Operands: 0<k<255 Operands: 0=f<255
Operation: k— (W) =W de %SH
ae [0,
Status Affected: N, OV,C,DC, Z ‘
) Operation: (f) = (W) — dest
Encoding: | 0000 | 1000 | kkkk | kklkk |
o - - - Status Affected: N, OV, C,DC, Z
Description: W is subtracted from the eight-bit .
literal 'k'. The result is placed Encoding: | o101 | t1da | fees | ffef |
inW. Description: Subtract W from register ' (2's
Words: 1 complement method). If 'd"is 0,
the result is stored in W. If 'd'is 1,
Cycles: 1 the result is stored back in regis-
Q Cycle Activity: ter ' (default). If 'a’is 0, the
Q1 Q2 Q3 Q4 Access Bank will be selected,
Decode Read Process Write to W overriding the BSR value. I '’ is
literal 'k Data 1, then the bank will be selected
as per the BSH value (default).
Example 1: SUBLW 0x02 Words: ’
Before Instruction Cycles: 1
w = 1
c - 7 Q Cycle Activity:
After Instruction o} Q2 Q3 Q4
W — Decode Read Process Write to
C = 1 s result is positive register ' Data destination
Z = 0
N = 0 Example 1: SUBWF REG, 1, 0
Example 2: SUBLW 0x02 Before Instruction
Before Instruction REG =3
W = 2
W = 2 c - "
€ = 7 After Instruction
Aiter Instruction REG = 1
W = 0 W = 2
C = 1 ;resultis zero C = 1 ;resultis positive
Z = 1 Z = 0
N = 0 N = 0
Example 3: SUBLW 0x02 Example 2: SUBWF REG, 0, 0
Before Instruction Before Instruction
w - 3 REG = 2
Cc = 7 W = 2
After Instruction c =7
- After Instruction
w = FF :(2's complement) REG = 2
C = 0 ;resultisnegative W - 0
ﬁ - ? C = 1 ;resultis zero
Z = 1
N = 0
Example 3: SUBWF REG, 1, ©
Before Instruction
REG = 1
W = 2
c - 7
After Instruction
REG = FFh ;(2's complement)
w = 2
C = 0 ;resultis negative
Z = 0

N

SUBWFB Subtract W from f with Borrow SWAPF Swap f

Syntax: [label] SUBWFB f[.d[.al Syntax: [fabel] SWAPF f[d[.a]

Operands: 0<f<255 Operands: 0=1<255
de [0,1] d=[01]
ae=[0,1] a=[01]

Operation: (f) — (W) — (C) — dest Operation: (f<3:05) — dest<7:4=,

Status Affected: N, OV, G, DG, Z (<7:4>) > dest<3:0>

. Status Affected: None

Encoding: | 0101 | 10da | EfEE | EEEF | :

Description: Subtract W and the carry flag (bor- Encoding: | oort | 10da | £ree | free |
row) from register 'f' (2's camplement Description: The upper and lower nibbles of reg-
method). If 'd'is 0, the result is stored ister 'T'Iare exchzlanged. If d is 0, the
inW. If'd'is 1, the result is stored resultis placed in W. If 'd"is 1, the
back in register 'f' (default). If 'a’ is 0, resultis placed in register T
the Access Bank will be selected, (default). If 'a"is 0, the Access
overriding the BSR value. I 'a’is 1, Bank will be selected, overriding
then the bank will be selected as per the BSR value. If'a’ is 1, then the
the BSR value (default). bank will be selected as per the

Words:] BSR valus (default).

Cycles:] Words: 1

Cycles: 1
Q Cycle Activity: ycles
o1 Q2 Qs Q4 Q Cycle Activity:
Decods Read Process Write to a1 Q2 Q3 Q4
register 'f' Data destination Decode Read Process Write to
register ' Data destination
Example 1: SUBWFE REG, 1, O
Before Instruction Exampla: SWAPF REG, 1, O
REG = 0x19 (0001 1001) .
W — oxoD (0000 1101) Before Instruction
c -) REG = 0x53
After Instruction After Instruction
REG = 0x0C (0000 1011) REG = 0x35
W = 0xoD (0000 1101)
C = 1
z = 0
N = 0 ; result is positive
Example 2: SUBWFE REG, 0, O
Before Instruction
REG = 0x1B (0001 1011)
W = O0x1A (0001 1010)
C = 0
After Instruction
REG = 0x1B (0001 1011)
W = 0x00
C = 1
z = 1 ;result is zero
N = 0
Example 3: SUBWFBE REG, 1, 0
Before Instruction
REG = 0x03 (0000 0011)
W = Ox0E (0000 1101)
C = 1
After Instruction
REG = 0xF5 (1111 0100)
; [2's comp]
W = Ox0E (0000 1101)
C = 0
z = 0
N = 1 ; result is negative

TBLRD Table Read TBLRD Table Read (cont’d)
Syntax: [fabel] TBLRD (*; "+; "= +%) Exampled: TBLRD *+ ;
Operands: None Before Instruction
P ; x TABLAT = 0x55
Operation: 11 TBLAD °, TBLPTR = OX00A356
(Prog Mem (TBELPTR)) — TABLAT; MEMORY(0x00A356) = 0x34
TBLPTR - No Change; After Instruction
If TBLRD *+, TABLAT = o4
(Prog Mem (TBLPTR)) — TABLAT: TBLPTR = OX00A357
(TBLPTR) +1 — TBLPTR;
if TBLRD *-, Example?: TBLED +* ;
(Prog Mem (TBLPTR)) — TABLAT; Before Instruction
(TBLPTR) -1 — TBLPTR; TABLAT - OxAA
it TBLRD +*, TBLPTR = O0x01A357
(TBLPTR) +1 — TBLPTR; MEMORY(0x01A357) = 0x12
[:Prog Mem [TBLPTR}} — TABLAT: MEMORY({0x01A358) = 0x34
After Instruction
Status Affected:None TABLAT - oxad
Encoding: 0000 oooo | o000 lonn TBLPTR = Ox01A358
nn=0 *
=1 *4
=2 *_
=3 +*
Description: This instruction is used to read the con-
tents of Program Memory (P.M.). To
address the program memory, a pointer
called Table Pointer (TBLPTR) is used.
The TBLPTR (a 21-bit pointer) points
to each byte in the program memory.
TBLPTR has a 2 Mbyte address range.
TBLPTRIO] = 0: Least Significant
Byte of Program
Memory Word
TBLPTRIO] = 1: Most Significant
Byte of Program
Memory Word
The TBLRD instruction can modify the
value of TELPTR as follows:
* no change
* post-increment
* post-decrement
* pre-increment
Words: 1
Cycles: 2
Q Cycle Activity:
Q1 Q2 Q3 Q4
Decode No No No
operation operation operation
No No operation No No operation
operation |{Read Program | operation [(Write TABLAT)
Memory)

TBLWT Table Write TBLWT Table Write (Continued)
Syntax: [label] TBLWT (*; "+ "% +") Exampled: TELWT *+;
Operands: None Before Instruction
p— i x TABLAT = 0x55
Operation: i TBLWT, , ‘ TBLPTR = OX0DA356
(TABLAT) — Holding Register; HOLDING REGISTER
TBLPTR - No Change; (OX00A358) = OxFF
if TBLWT"+, . ‘ After Instructions (table write complation)
(TABLAT) — Holding Register; TABLAT = 0x55
(TBLPTR) +1 — TBLPTR; TBLFTR = OxD0A357
if TBLWT*-. HOLDING REGISTER B
(TABLAT) — Holding Register; (0x00A356) = 055
(TBLPTR) -1 — TBLPTR; Example 2: TBLWT +%;
if TBLWT+", Befare Instructi
(TBLPTR) +1 — TBLPTR; e O;QABTZ'II:UC ton s
i iatar = X
(TABLAT) — Holding Register; TBLPTR — Ox01389A
. HOLDING REGISTER
Status Affectad: None (OX01389A) - OxFF
Encoding: 0000 0000 0000 1lnn HOLDING REGISTER
Aneo * {0x01389B) = OxFF
=1 *+ After Instruction (table write completion)
=2 *_ TABLAT = 0x34
Z3 4w TBLPTR = 0x01389B
HOLDING REGISTER
Description: This instruction uses the 3 LSbs of the (0x01389A) = OxFF
TBLPTR to determine which of the 8 '(4()0(%1D:E'QEB.REG‘5TEH - oxs
holding registers the TABLAT data is X =0 - X
written to. The 8 holding registers are
used to program the contents of Pro-
gram Memory (P.M.). See Section 5.0
for information on writing to FLASH
memory.
The TBLPTR (a 21-bit painter) points
to each byte in the program memory.
TBLPTR has a 2 MBtye address
range. The LSb of the TBLPTR selects
which byte of the program memory
location to access.
TBLPTRI[0] = 0: Least Significant
Byte of Program
Memory Word
TELPTRI[0] = 1: Most Significant
Byte of Program
Memory Word
The TBLWT instruction can modify the
value of TBLPTR as follows:
= no change
+ post-increment
= post-decrement
+ pre-increment
Words: 1
Cycles: 2
Q Cycle Activity:
Qf Q2 Q3 Q4
Decode No No No
operation _|operation operation
No No No No
operation operation operation operation
(Read {Write to Holding
TABLAT) Register or Memory)

TSTFSZ

Test 1, skip if 0

Syntax:
Operands:

Operation:
Status Affected:
Encoding:
Description:

Words:
Cycles:

Q Cycle Activity:

[label]l TSTESZ f[.a]
0=f=255

ae= [01]

skipiff=0

None

| 0110 | Olla| ffff | ffff |

If'f' = 0, the next instruction,
fetched during the current instruc-
tion execution, is discarded and a
NOP is executed, making this a two-
cycle instruction. If 'a’ is 0, the
Access Bank will be selected, over-
riding the BSR value. If'a’is 1,
then the bank will be selected as
per the BSR value (default).

1

1(2)

Note: 3 cycles if skip and followed
by a 2-word instruction.

Qf Q2 Q3 Q4
Decode Read Process No
register 'f Data operation
If skip:
Q1 Q2 Q3 Q4
No No No No
operation operation operation operation

If skip and followed by 2-word instruction:

Qi Q2 Q3 Q4
No No No No
operation operation operation operation
No No No No
operation operation operation operation
Example: HERE TSTFSZ CNT, 1
NZERO
ZERO

Before Instruction
PC = Address (HERE)

After Instruction

If CNT
PC
If CNT
PC

0x00,
Address (ZERO)
0x00,
Address (WZERO)

I

XORLW Exclusive OR literal with W
Syntax: [label] XORLW k
Operands: 0=k=255
Operation: (W) . XOR. k =W
Status Affected: N, Z
Encoding: | 0000 | 1010 | kkkk | kkkk |
Description: The contents of W are XORed
with the 8-bit literal 'k'. The result
is placed in W.
Words: 1
Cycles: 1
Q Cycle Activity:
an Q2 Q3 Q4
Decode Read Process Write to W
literal 'k' Data
Example: XORLW O0xAF

Before Instruction

W

= 0xB5

After Instruction

W

= Ox1A

XORWF Exclusive OR W with f

Syntax: [fabel] XORWF f[,d[a]
Operands: 0=f=255

de [01]

ae=[01]
Operation: (W) .XOR. (f) — dest
Status Affected: N, Z
Encoding: | 0001 | 10da | fEfE | fEfE |
Description: Exclusive OR the contents of W

with register 'f'. If 'd"is 0, the result
is stored in W. If 'd'is 1, the result is
stored back in the register 'f'
(default). If‘a’is O, the Access
Bank will be selected, overriding
the BSR value. If 'a’ is 1, then the
bank will be selected as per the
BSR value (default).

Words: 1
Cycles: 1
Q Cycle Activity:
Qi Q2 Q3 Q4
Decode Read Process Write to
register f' Data destination
Example: XORWF REG, 1, O
Before Instruction
REG = OxAF
W = 0xB5
After Instruction
REG = Ox1A

W = 0xB5

